\(\int \frac {e^{\frac {1}{2} \text {arctanh}(a x)}}{(c-a^2 c x^2)^{5/4}} \, dx\) [1322]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 106 \[ \int \frac {e^{\frac {1}{2} \text {arctanh}(a x)}}{\left (c-a^2 c x^2\right )^{5/4}} \, dx=\frac {\sqrt [4]{1-a^2 x^2}}{a c \sqrt {1-a x} \sqrt [4]{c-a^2 c x^2}}-\frac {\sqrt [4]{1-a^2 x^2} \text {arctanh}\left (\frac {\sqrt {1-a x}}{\sqrt {2}}\right )}{\sqrt {2} a c \sqrt [4]{c-a^2 c x^2}} \] Output:

(-a^2*x^2+1)^(1/4)/a/c/(-a*x+1)^(1/2)/(-a^2*c*x^2+c)^(1/4)-1/2*(-a^2*x^2+1 
)^(1/4)*arctanh(1/2*(-a*x+1)^(1/2)*2^(1/2))*2^(1/2)/a/c/(-a^2*c*x^2+c)^(1/ 
4)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.01 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.60 \[ \int \frac {e^{\frac {1}{2} \text {arctanh}(a x)}}{\left (c-a^2 c x^2\right )^{5/4}} \, dx=\frac {\sqrt [4]{1-a^2 x^2} \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {1}{2} (1-a x)\right )}{a c \sqrt {1-a x} \sqrt [4]{c-a^2 c x^2}} \] Input:

Integrate[E^(ArcTanh[a*x]/2)/(c - a^2*c*x^2)^(5/4),x]
 

Output:

((1 - a^2*x^2)^(1/4)*Hypergeometric2F1[-1/2, 1, 1/2, (1 - a*x)/2])/(a*c*Sq 
rt[1 - a*x]*(c - a^2*c*x^2)^(1/4))
 

Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.71, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {6693, 6690, 61, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{\frac {1}{2} \text {arctanh}(a x)}}{\left (c-a^2 c x^2\right )^{5/4}} \, dx\)

\(\Big \downarrow \) 6693

\(\displaystyle \frac {\sqrt [4]{1-a^2 x^2} \int \frac {e^{\frac {1}{2} \text {arctanh}(a x)}}{\left (1-a^2 x^2\right )^{5/4}}dx}{c \sqrt [4]{c-a^2 c x^2}}\)

\(\Big \downarrow \) 6690

\(\displaystyle \frac {\sqrt [4]{1-a^2 x^2} \int \frac {1}{(1-a x)^{3/2} (a x+1)}dx}{c \sqrt [4]{c-a^2 c x^2}}\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {\sqrt [4]{1-a^2 x^2} \left (\frac {1}{2} \int \frac {1}{\sqrt {1-a x} (a x+1)}dx+\frac {1}{a \sqrt {1-a x}}\right )}{c \sqrt [4]{c-a^2 c x^2}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\sqrt [4]{1-a^2 x^2} \left (\frac {1}{a \sqrt {1-a x}}-\frac {\int \frac {1}{a x+1}d\sqrt {1-a x}}{a}\right )}{c \sqrt [4]{c-a^2 c x^2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\sqrt [4]{1-a^2 x^2} \left (\frac {1}{a \sqrt {1-a x}}-\frac {\text {arctanh}\left (\frac {\sqrt {1-a x}}{\sqrt {2}}\right )}{\sqrt {2} a}\right )}{c \sqrt [4]{c-a^2 c x^2}}\)

Input:

Int[E^(ArcTanh[a*x]/2)/(c - a^2*c*x^2)^(5/4),x]
 

Output:

((1 - a^2*x^2)^(1/4)*(1/(a*Sqrt[1 - a*x]) - ArcTanh[Sqrt[1 - a*x]/Sqrt[2]] 
/(Sqrt[2]*a)))/(c*(c - a^2*c*x^2)^(1/4))
 

Defintions of rubi rules used

rule 61
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0 
] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d 
, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 6690
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> 
 Simp[c^p   Int[(1 - a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a 
, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0])
 

rule 6693
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> 
Simp[c^IntPart[p]*((c + d*x^2)^FracPart[p]/(1 - a^2*x^2)^FracPart[p])   Int 
[(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && 
 EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0])
 
Maple [F]

\[\int \frac {\sqrt {\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}}}{\left (-a^{2} c \,x^{2}+c \right )^{\frac {5}{4}}}d x\]

Input:

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(5/4),x)
 

Output:

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(5/4),x)
 

Fricas [F(-1)]

Timed out. \[ \int \frac {e^{\frac {1}{2} \text {arctanh}(a x)}}{\left (c-a^2 c x^2\right )^{5/4}} \, dx=\text {Timed out} \] Input:

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(5/4),x, algor 
ithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {e^{\frac {1}{2} \text {arctanh}(a x)}}{\left (c-a^2 c x^2\right )^{5/4}} \, dx=\int \frac {\sqrt {\frac {a x + 1}{\sqrt {- a^{2} x^{2} + 1}}}}{\left (- c \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {5}{4}}}\, dx \] Input:

integrate(((a*x+1)/(-a**2*x**2+1)**(1/2))**(1/2)/(-a**2*c*x**2+c)**(5/4),x 
)
 

Output:

Integral(sqrt((a*x + 1)/sqrt(-a**2*x**2 + 1))/(-c*(a*x - 1)*(a*x + 1))**(5 
/4), x)
 

Maxima [F]

\[ \int \frac {e^{\frac {1}{2} \text {arctanh}(a x)}}{\left (c-a^2 c x^2\right )^{5/4}} \, dx=\int { \frac {\sqrt {\frac {a x + 1}{\sqrt {-a^{2} x^{2} + 1}}}}{{\left (-a^{2} c x^{2} + c\right )}^{\frac {5}{4}}} \,d x } \] Input:

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(5/4),x, algor 
ithm="maxima")
 

Output:

integrate(sqrt((a*x + 1)/sqrt(-a^2*x^2 + 1))/(-a^2*c*x^2 + c)^(5/4), x)
 

Giac [F]

\[ \int \frac {e^{\frac {1}{2} \text {arctanh}(a x)}}{\left (c-a^2 c x^2\right )^{5/4}} \, dx=\int { \frac {\sqrt {\frac {a x + 1}{\sqrt {-a^{2} x^{2} + 1}}}}{{\left (-a^{2} c x^{2} + c\right )}^{\frac {5}{4}}} \,d x } \] Input:

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(5/4),x, algor 
ithm="giac")
 

Output:

integrate(sqrt((a*x + 1)/sqrt(-a^2*x^2 + 1))/(-a^2*c*x^2 + c)^(5/4), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{\frac {1}{2} \text {arctanh}(a x)}}{\left (c-a^2 c x^2\right )^{5/4}} \, dx=\int \frac {\sqrt {\frac {a\,x+1}{\sqrt {1-a^2\,x^2}}}}{{\left (c-a^2\,c\,x^2\right )}^{5/4}} \,d x \] Input:

int(((a*x + 1)/(1 - a^2*x^2)^(1/2))^(1/2)/(c - a^2*c*x^2)^(5/4),x)
 

Output:

int(((a*x + 1)/(1 - a^2*x^2)^(1/2))^(1/2)/(c - a^2*c*x^2)^(5/4), x)
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.53 \[ \int \frac {e^{\frac {1}{2} \text {arctanh}(a x)}}{\left (c-a^2 c x^2\right )^{5/4}} \, dx=\frac {\sqrt {-a x +1}\, \sqrt {2}\, \mathrm {log}\left (\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {a x +1}}{\sqrt {2}}\right )}{2}\right )\right )-\sqrt {-a x +1}\, \sqrt {2}+2}{2 c^{\frac {5}{4}} \sqrt {-a x +1}\, a} \] Input:

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(1/2)/(-a^2*c*x^2+c)^(5/4),x)
 

Output:

(c**(3/4)*(sqrt( - a*x + 1)*sqrt(2)*log(tan(asin(sqrt(a*x + 1)/sqrt(2))/2) 
) - sqrt( - a*x + 1)*sqrt(2) + 2))/(2*sqrt( - a*x + 1)*a*c**2)