\(\int e^{\frac {5}{2} \text {arctanh}(a x)} (c x)^m \, dx\) [140]

Optimal result
Mathematica [F]
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 36 \[ \int e^{\frac {5}{2} \text {arctanh}(a x)} (c x)^m \, dx=\frac {(c x)^{1+m} \operatorname {AppellF1}\left (1+m,\frac {5}{4},-\frac {5}{4},2+m,a x,-a x\right )}{c (1+m)} \] Output:

(c*x)^(1+m)*AppellF1(1+m,5/4,-5/4,2+m,a*x,-a*x)/c/(1+m)
 

Mathematica [F]

\[ \int e^{\frac {5}{2} \text {arctanh}(a x)} (c x)^m \, dx=\int e^{\frac {5}{2} \text {arctanh}(a x)} (c x)^m \, dx \] Input:

Integrate[E^((5*ArcTanh[a*x])/2)*(c*x)^m,x]
 

Output:

Integrate[E^((5*ArcTanh[a*x])/2)*(c*x)^m, x]
 

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {6676, 150}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int e^{\frac {5}{2} \text {arctanh}(a x)} (c x)^m \, dx\)

\(\Big \downarrow \) 6676

\(\displaystyle \int \frac {(a x+1)^{5/4} (c x)^m}{(1-a x)^{5/4}}dx\)

\(\Big \downarrow \) 150

\(\displaystyle \frac {(c x)^{m+1} \operatorname {AppellF1}\left (m+1,\frac {5}{4},-\frac {5}{4},m+2,a x,-a x\right )}{c (m+1)}\)

Input:

Int[E^((5*ArcTanh[a*x])/2)*(c*x)^m,x]
 

Output:

((c*x)^(1 + m)*AppellF1[1 + m, 5/4, -5/4, 2 + m, a*x, -(a*x)])/(c*(1 + m))
 

Defintions of rubi rules used

rule 150
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_ 
] :> Simp[c^n*e^p*((b*x)^(m + 1)/(b*(m + 1)))*AppellF1[m + 1, -n, -p, m + 2 
, (-d)*(x/c), (-f)*(x/e)], x] /; FreeQ[{b, c, d, e, f, m, n, p}, x] &&  !In 
tegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])
 

rule 6676
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*((c_.)*(x_))^(m_.), x_Symbol] :> Int[(c*x) 
^m*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c, m, n}, x] &&  !Int 
egerQ[(n - 1)/2]
 
Maple [F]

\[\int {\left (\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}^{\frac {5}{2}} \left (x c \right )^{m}d x\]

Input:

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)*(x*c)^m,x)
 

Output:

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)*(x*c)^m,x)
 

Fricas [F]

\[ \int e^{\frac {5}{2} \text {arctanh}(a x)} (c x)^m \, dx=\int { \left (c x\right )^{m} \left (\frac {a x + 1}{\sqrt {-a^{2} x^{2} + 1}}\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)*(c*x)^m,x, algorithm="fricas" 
)
 

Output:

integral(-(a*x + 1)*(c*x)^m*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))/(a*x - 1), 
 x)
 

Sympy [F(-1)]

Timed out. \[ \int e^{\frac {5}{2} \text {arctanh}(a x)} (c x)^m \, dx=\text {Timed out} \] Input:

integrate(((a*x+1)/(-a**2*x**2+1)**(1/2))**(5/2)*(c*x)**m,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int e^{\frac {5}{2} \text {arctanh}(a x)} (c x)^m \, dx=\int { \left (c x\right )^{m} \left (\frac {a x + 1}{\sqrt {-a^{2} x^{2} + 1}}\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)*(c*x)^m,x, algorithm="maxima" 
)
 

Output:

integrate((c*x)^m*((a*x + 1)/sqrt(-a^2*x^2 + 1))^(5/2), x)
 

Giac [F]

\[ \int e^{\frac {5}{2} \text {arctanh}(a x)} (c x)^m \, dx=\int { \left (c x\right )^{m} \left (\frac {a x + 1}{\sqrt {-a^{2} x^{2} + 1}}\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)*(c*x)^m,x, algorithm="giac")
 

Output:

integrate((c*x)^m*((a*x + 1)/sqrt(-a^2*x^2 + 1))^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int e^{\frac {5}{2} \text {arctanh}(a x)} (c x)^m \, dx=\int {\left (c\,x\right )}^m\,{\left (\frac {a\,x+1}{\sqrt {1-a^2\,x^2}}\right )}^{5/2} \,d x \] Input:

int((c*x)^m*((a*x + 1)/(1 - a^2*x^2)^(1/2))^(5/2),x)
 

Output:

int((c*x)^m*((a*x + 1)/(1 - a^2*x^2)^(1/2))^(5/2), x)
 

Reduce [F]

\[ \int e^{\frac {5}{2} \text {arctanh}(a x)} (c x)^m \, dx=\frac {c^{m} \left (-2 x^{m} \sqrt {a x +1}\, \left (-a^{2} x^{2}+1\right )^{\frac {3}{4}}+2 \left (\int \frac {x^{m} \sqrt {a x +1}\, \left (-a^{2} x^{2}+1\right )^{\frac {3}{4}} x}{a^{3} x^{3}-a^{2} x^{2}-a x +1}d x \right ) a^{3} m x +5 \left (\int \frac {x^{m} \sqrt {a x +1}\, \left (-a^{2} x^{2}+1\right )^{\frac {3}{4}} x}{a^{3} x^{3}-a^{2} x^{2}-a x +1}d x \right ) a^{3} x -2 \left (\int \frac {x^{m} \sqrt {a x +1}\, \left (-a^{2} x^{2}+1\right )^{\frac {3}{4}} x}{a^{3} x^{3}-a^{2} x^{2}-a x +1}d x \right ) a^{2} m -5 \left (\int \frac {x^{m} \sqrt {a x +1}\, \left (-a^{2} x^{2}+1\right )^{\frac {3}{4}} x}{a^{3} x^{3}-a^{2} x^{2}-a x +1}d x \right ) a^{2}-2 \left (\int \frac {x^{m} \sqrt {a x +1}\, \left (-a^{2} x^{2}+1\right )^{\frac {3}{4}}}{a^{3} x^{4}-a^{2} x^{3}-a \,x^{2}+x}d x \right ) a m x +2 \left (\int \frac {x^{m} \sqrt {a x +1}\, \left (-a^{2} x^{2}+1\right )^{\frac {3}{4}}}{a^{3} x^{4}-a^{2} x^{3}-a \,x^{2}+x}d x \right ) m \right )}{3 a \left (a x -1\right )} \] Input:

int(((a*x+1)/(-a^2*x^2+1)^(1/2))^(5/2)*(c*x)^m,x)
 

Output:

(c**m*( - 2*x**m*sqrt(a*x + 1)*( - a**2*x**2 + 1)**(3/4) + 2*int((x**m*sqr 
t(a*x + 1)*( - a**2*x**2 + 1)**(3/4)*x)/(a**3*x**3 - a**2*x**2 - a*x + 1), 
x)*a**3*m*x + 5*int((x**m*sqrt(a*x + 1)*( - a**2*x**2 + 1)**(3/4)*x)/(a**3 
*x**3 - a**2*x**2 - a*x + 1),x)*a**3*x - 2*int((x**m*sqrt(a*x + 1)*( - a** 
2*x**2 + 1)**(3/4)*x)/(a**3*x**3 - a**2*x**2 - a*x + 1),x)*a**2*m - 5*int( 
(x**m*sqrt(a*x + 1)*( - a**2*x**2 + 1)**(3/4)*x)/(a**3*x**3 - a**2*x**2 - 
a*x + 1),x)*a**2 - 2*int((x**m*sqrt(a*x + 1)*( - a**2*x**2 + 1)**(3/4))/(a 
**3*x**4 - a**2*x**3 - a*x**2 + x),x)*a*m*x + 2*int((x**m*sqrt(a*x + 1)*( 
- a**2*x**2 + 1)**(3/4))/(a**3*x**4 - a**2*x**3 - a*x**2 + x),x)*m))/(3*a* 
(a*x - 1))