\(\int \frac {e^{3 \text {arctanh}(a x)}}{(c-a c x)^{7/2}} \, dx\) [244]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 192 \[ \int \frac {e^{3 \text {arctanh}(a x)}}{(c-a c x)^{7/2}} \, dx=-\frac {\sqrt {1-a^2 x^2}}{8 a (c-a c x)^{7/2}}+\frac {\sqrt {1-a^2 x^2}}{64 a c (c-a c x)^{5/2}}+\frac {3 \sqrt {1-a^2 x^2}}{256 a c^2 (c-a c x)^{3/2}}+\frac {c^2 \left (1-a^2 x^2\right )^{3/2}}{4 a (c-a c x)^{11/2}}+\frac {3 \text {arctanh}\left (\frac {\sqrt {c} \sqrt {1-a^2 x^2}}{\sqrt {2} \sqrt {c-a c x}}\right )}{256 \sqrt {2} a c^{7/2}} \] Output:

-1/8*(-a^2*x^2+1)^(1/2)/a/(-a*c*x+c)^(7/2)+1/64*(-a^2*x^2+1)^(1/2)/a/c/(-a 
*c*x+c)^(5/2)+3/256*(-a^2*x^2+1)^(1/2)/a/c^2/(-a*c*x+c)^(3/2)+1/4*c^2*(-a^ 
2*x^2+1)^(3/2)/a/(-a*c*x+c)^(11/2)+3/512*arctanh(1/2*c^(1/2)*(-a^2*x^2+1)^ 
(1/2)*2^(1/2)/(-a*c*x+c)^(1/2))*2^(1/2)/a/c^(7/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.02 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.30 \[ \int \frac {e^{3 \text {arctanh}(a x)}}{(c-a c x)^{7/2}} \, dx=\frac {(1+a x)^{5/2} (c-a c x)^{3/2} \operatorname {Hypergeometric2F1}\left (\frac {5}{2},5,\frac {7}{2},\frac {1}{2} (1+a x)\right )}{80 a c^5 (1-a x)^{3/2}} \] Input:

Integrate[E^(3*ArcTanh[a*x])/(c - a*c*x)^(7/2),x]
 

Output:

((1 + a*x)^(5/2)*(c - a*c*x)^(3/2)*Hypergeometric2F1[5/2, 5, 7/2, (1 + a*x 
)/2])/(80*a*c^5*(1 - a*x)^(3/2))
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.13, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.350, Rules used = {6677, 465, 465, 470, 470, 471, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{3 \text {arctanh}(a x)}}{(c-a c x)^{7/2}} \, dx\)

\(\Big \downarrow \) 6677

\(\displaystyle c^3 \int \frac {\left (1-a^2 x^2\right )^{3/2}}{(c-a c x)^{13/2}}dx\)

\(\Big \downarrow \) 465

\(\displaystyle c^3 \left (\frac {\left (1-a^2 x^2\right )^{3/2}}{4 a c (c-a c x)^{11/2}}-\frac {3 \int \frac {\sqrt {1-a^2 x^2}}{(c-a c x)^{9/2}}dx}{8 c^2}\right )\)

\(\Big \downarrow \) 465

\(\displaystyle c^3 \left (\frac {\left (1-a^2 x^2\right )^{3/2}}{4 a c (c-a c x)^{11/2}}-\frac {3 \left (\frac {\sqrt {1-a^2 x^2}}{3 a c (c-a c x)^{7/2}}-\frac {\int \frac {1}{(c-a c x)^{5/2} \sqrt {1-a^2 x^2}}dx}{6 c^2}\right )}{8 c^2}\right )\)

\(\Big \downarrow \) 470

\(\displaystyle c^3 \left (\frac {\left (1-a^2 x^2\right )^{3/2}}{4 a c (c-a c x)^{11/2}}-\frac {3 \left (\frac {\sqrt {1-a^2 x^2}}{3 a c (c-a c x)^{7/2}}-\frac {\frac {3 \int \frac {1}{(c-a c x)^{3/2} \sqrt {1-a^2 x^2}}dx}{8 c}+\frac {\sqrt {1-a^2 x^2}}{4 a (c-a c x)^{5/2}}}{6 c^2}\right )}{8 c^2}\right )\)

\(\Big \downarrow \) 470

\(\displaystyle c^3 \left (\frac {\left (1-a^2 x^2\right )^{3/2}}{4 a c (c-a c x)^{11/2}}-\frac {3 \left (\frac {\sqrt {1-a^2 x^2}}{3 a c (c-a c x)^{7/2}}-\frac {\frac {3 \left (\frac {\int \frac {1}{\sqrt {c-a c x} \sqrt {1-a^2 x^2}}dx}{4 c}+\frac {\sqrt {1-a^2 x^2}}{2 a (c-a c x)^{3/2}}\right )}{8 c}+\frac {\sqrt {1-a^2 x^2}}{4 a (c-a c x)^{5/2}}}{6 c^2}\right )}{8 c^2}\right )\)

\(\Big \downarrow \) 471

\(\displaystyle c^3 \left (\frac {\left (1-a^2 x^2\right )^{3/2}}{4 a c (c-a c x)^{11/2}}-\frac {3 \left (\frac {\sqrt {1-a^2 x^2}}{3 a c (c-a c x)^{7/2}}-\frac {\frac {3 \left (\frac {\sqrt {1-a^2 x^2}}{2 a (c-a c x)^{3/2}}-\frac {1}{2} a \int \frac {1}{\frac {a^2 c^2 \left (1-a^2 x^2\right )}{c-a c x}-2 a^2 c}d\frac {\sqrt {1-a^2 x^2}}{\sqrt {c-a c x}}\right )}{8 c}+\frac {\sqrt {1-a^2 x^2}}{4 a (c-a c x)^{5/2}}}{6 c^2}\right )}{8 c^2}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle c^3 \left (\frac {\left (1-a^2 x^2\right )^{3/2}}{4 a c (c-a c x)^{11/2}}-\frac {3 \left (\frac {\sqrt {1-a^2 x^2}}{3 a c (c-a c x)^{7/2}}-\frac {\frac {3 \left (\frac {\text {arctanh}\left (\frac {\sqrt {c} \sqrt {1-a^2 x^2}}{\sqrt {2} \sqrt {c-a c x}}\right )}{2 \sqrt {2} a c^{3/2}}+\frac {\sqrt {1-a^2 x^2}}{2 a (c-a c x)^{3/2}}\right )}{8 c}+\frac {\sqrt {1-a^2 x^2}}{4 a (c-a c x)^{5/2}}}{6 c^2}\right )}{8 c^2}\right )\)

Input:

Int[E^(3*ArcTanh[a*x])/(c - a*c*x)^(7/2),x]
 

Output:

c^3*((1 - a^2*x^2)^(3/2)/(4*a*c*(c - a*c*x)^(11/2)) - (3*(Sqrt[1 - a^2*x^2 
]/(3*a*c*(c - a*c*x)^(7/2)) - (Sqrt[1 - a^2*x^2]/(4*a*(c - a*c*x)^(5/2)) + 
 (3*(Sqrt[1 - a^2*x^2]/(2*a*(c - a*c*x)^(3/2)) + ArcTanh[(Sqrt[c]*Sqrt[1 - 
 a^2*x^2])/(Sqrt[2]*Sqrt[c - a*c*x])]/(2*Sqrt[2]*a*c^(3/2))))/(8*c))/(6*c^ 
2)))/(8*c^2))
 

Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 465
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(c + d*x)^(n + 1)*((a + b*x^2)^p/(d*(n + p + 1))), x] - Simp[b*(p/(d^2*(n + 
 p + 1)))   Int[(c + d*x)^(n + 2)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, 
b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0] && GtQ[p, 0] && (LtQ[n, -2] || EqQ[n 
+ 2*p + 1, 0]) && NeQ[n + p + 1, 0] && IntegerQ[2*p]
 

rule 470
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(-d)*(c + d*x)^n*((a + b*x^2)^(p + 1)/(2*b*c*(n + p + 1))), x] + Simp[(n + 
2*p + 2)/(2*c*(n + p + 1))   Int[(c + d*x)^(n + 1)*(a + b*x^2)^p, x], x] /; 
 FreeQ[{a, b, c, d, p}, x] && EqQ[b*c^2 + a*d^2, 0] && LtQ[n, 0] && NeQ[n + 
 p + 1, 0] && IntegerQ[2*p]
 

rule 471
Int[1/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Sim 
p[2*d   Subst[Int[1/(2*b*c + d^2*x^2), x], x, Sqrt[a + b*x^2]/Sqrt[c + d*x] 
], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0]
 

rule 6677
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> S 
imp[c^n   Int[(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, 
 d, p}, x] && EqQ[a*c + d, 0] && IntegerQ[(n - 1)/2] && IntegerQ[2*p]
 
Maple [A] (verified)

Time = 0.20 (sec) , antiderivative size = 258, normalized size of antiderivative = 1.34

method result size
default \(-\frac {\sqrt {-a^{2} x^{2}+1}\, \sqrt {-c \left (a x -1\right )}\, \left (3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) a^{4} c \,x^{4}-12 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) a^{3} c \,x^{3}-6 a^{3} x^{3} \sqrt {c}\, \sqrt {c \left (a x +1\right )}+18 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) a^{2} c \,x^{2}+26 a^{2} x^{2} \sqrt {c}\, \sqrt {c \left (a x +1\right )}-12 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) a c x +158 a x \sqrt {c \left (a x +1\right )}\, \sqrt {c}+3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c +78 \sqrt {c \left (a x +1\right )}\, \sqrt {c}\right )}{512 c^{\frac {9}{2}} \left (a x -1\right )^{5} \sqrt {c \left (a x +1\right )}\, a}\) \(258\)

Input:

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-1/512*(-a^2*x^2+1)^(1/2)*(-c*(a*x-1))^(1/2)/c^(9/2)*(3*2^(1/2)*arctanh(1/ 
2*(c*(a*x+1))^(1/2)*2^(1/2)/c^(1/2))*a^4*c*x^4-12*2^(1/2)*arctanh(1/2*(c*( 
a*x+1))^(1/2)*2^(1/2)/c^(1/2))*a^3*c*x^3-6*a^3*x^3*c^(1/2)*(c*(a*x+1))^(1/ 
2)+18*2^(1/2)*arctanh(1/2*(c*(a*x+1))^(1/2)*2^(1/2)/c^(1/2))*a^2*c*x^2+26* 
a^2*x^2*c^(1/2)*(c*(a*x+1))^(1/2)-12*2^(1/2)*arctanh(1/2*(c*(a*x+1))^(1/2) 
*2^(1/2)/c^(1/2))*a*c*x+158*a*x*(c*(a*x+1))^(1/2)*c^(1/2)+3*2^(1/2)*arctan 
h(1/2*(c*(a*x+1))^(1/2)*2^(1/2)/c^(1/2))*c+78*(c*(a*x+1))^(1/2)*c^(1/2))/( 
a*x-1)^5/(c*(a*x+1))^(1/2)/a
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 417, normalized size of antiderivative = 2.17 \[ \int \frac {e^{3 \text {arctanh}(a x)}}{(c-a c x)^{7/2}} \, dx=\left [\frac {3 \, \sqrt {2} {\left (a^{5} x^{5} - 5 \, a^{4} x^{4} + 10 \, a^{3} x^{3} - 10 \, a^{2} x^{2} + 5 \, a x - 1\right )} \sqrt {c} \log \left (-\frac {a^{2} c x^{2} + 2 \, a c x - 2 \, \sqrt {2} \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c} \sqrt {c} - 3 \, c}{a^{2} x^{2} - 2 \, a x + 1}\right ) + 4 \, {\left (3 \, a^{3} x^{3} - 13 \, a^{2} x^{2} - 79 \, a x - 39\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c}}{1024 \, {\left (a^{6} c^{4} x^{5} - 5 \, a^{5} c^{4} x^{4} + 10 \, a^{4} c^{4} x^{3} - 10 \, a^{3} c^{4} x^{2} + 5 \, a^{2} c^{4} x - a c^{4}\right )}}, \frac {3 \, \sqrt {2} {\left (a^{5} x^{5} - 5 \, a^{4} x^{4} + 10 \, a^{3} x^{3} - 10 \, a^{2} x^{2} + 5 \, a x - 1\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {2} \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c} \sqrt {-c}}{2 \, {\left (a c x - c\right )}}\right ) + 2 \, {\left (3 \, a^{3} x^{3} - 13 \, a^{2} x^{2} - 79 \, a x - 39\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {-a c x + c}}{512 \, {\left (a^{6} c^{4} x^{5} - 5 \, a^{5} c^{4} x^{4} + 10 \, a^{4} c^{4} x^{3} - 10 \, a^{3} c^{4} x^{2} + 5 \, a^{2} c^{4} x - a c^{4}\right )}}\right ] \] Input:

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^(7/2),x, algorithm="fric 
as")
 

Output:

[1/1024*(3*sqrt(2)*(a^5*x^5 - 5*a^4*x^4 + 10*a^3*x^3 - 10*a^2*x^2 + 5*a*x 
- 1)*sqrt(c)*log(-(a^2*c*x^2 + 2*a*c*x - 2*sqrt(2)*sqrt(-a^2*x^2 + 1)*sqrt 
(-a*c*x + c)*sqrt(c) - 3*c)/(a^2*x^2 - 2*a*x + 1)) + 4*(3*a^3*x^3 - 13*a^2 
*x^2 - 79*a*x - 39)*sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c))/(a^6*c^4*x^5 - 5* 
a^5*c^4*x^4 + 10*a^4*c^4*x^3 - 10*a^3*c^4*x^2 + 5*a^2*c^4*x - a*c^4), 1/51 
2*(3*sqrt(2)*(a^5*x^5 - 5*a^4*x^4 + 10*a^3*x^3 - 10*a^2*x^2 + 5*a*x - 1)*s 
qrt(-c)*arctan(1/2*sqrt(2)*sqrt(-a^2*x^2 + 1)*sqrt(-a*c*x + c)*sqrt(-c)/(a 
*c*x - c)) + 2*(3*a^3*x^3 - 13*a^2*x^2 - 79*a*x - 39)*sqrt(-a^2*x^2 + 1)*s 
qrt(-a*c*x + c))/(a^6*c^4*x^5 - 5*a^5*c^4*x^4 + 10*a^4*c^4*x^3 - 10*a^3*c^ 
4*x^2 + 5*a^2*c^4*x - a*c^4)]
 

Sympy [F]

\[ \int \frac {e^{3 \text {arctanh}(a x)}}{(c-a c x)^{7/2}} \, dx=\int \frac {\left (a x + 1\right )^{3}}{\left (- c \left (a x - 1\right )\right )^{\frac {7}{2}} \left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((a*x+1)**3/(-a**2*x**2+1)**(3/2)/(-a*c*x+c)**(7/2),x)
 

Output:

Integral((a*x + 1)**3/((-c*(a*x - 1))**(7/2)*(-(a*x - 1)*(a*x + 1))**(3/2) 
), x)
 

Maxima [F]

\[ \int \frac {e^{3 \text {arctanh}(a x)}}{(c-a c x)^{7/2}} \, dx=\int { \frac {{\left (a x + 1\right )}^{3}}{{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} {\left (-a c x + c\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^(7/2),x, algorithm="maxi 
ma")
 

Output:

integrate((a*x + 1)^3/((-a^2*x^2 + 1)^(3/2)*(-a*c*x + c)^(7/2)), x)
 

Giac [A] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.55 \[ \int \frac {e^{3 \text {arctanh}(a x)}}{(c-a c x)^{7/2}} \, dx=-\frac {\frac {3 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {a c x + c}}{2 \, \sqrt {-c}}\right )}{\sqrt {-c} c^{2}} + \frac {2 \, {\left (3 \, {\left (a c x + c\right )}^{\frac {7}{2}} - 22 \, {\left (a c x + c\right )}^{\frac {5}{2}} c - 44 \, {\left (a c x + c\right )}^{\frac {3}{2}} c^{2} + 24 \, \sqrt {a c x + c} c^{3}\right )}}{{\left (a c x - c\right )}^{4} c^{2}}}{512 \, a {\left | c \right |}} \] Input:

integrate((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^(7/2),x, algorithm="giac 
")
 

Output:

-1/512*(3*sqrt(2)*arctan(1/2*sqrt(2)*sqrt(a*c*x + c)/sqrt(-c))/(sqrt(-c)*c 
^2) + 2*(3*(a*c*x + c)^(7/2) - 22*(a*c*x + c)^(5/2)*c - 44*(a*c*x + c)^(3/ 
2)*c^2 + 24*sqrt(a*c*x + c)*c^3)/((a*c*x - c)^4*c^2))/(a*abs(c))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{3 \text {arctanh}(a x)}}{(c-a c x)^{7/2}} \, dx=\int \frac {{\left (a\,x+1\right )}^3}{{\left (1-a^2\,x^2\right )}^{3/2}\,{\left (c-a\,c\,x\right )}^{7/2}} \,d x \] Input:

int((a*x + 1)^3/((1 - a^2*x^2)^(3/2)*(c - a*c*x)^(7/2)),x)
 

Output:

int((a*x + 1)^3/((1 - a^2*x^2)^(3/2)*(c - a*c*x)^(7/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.67 \[ \int \frac {e^{3 \text {arctanh}(a x)}}{(c-a c x)^{7/2}} \, dx=\frac {\sqrt {c}\, \sqrt {2}\, \left (-48 \,\mathrm {log}\left (\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )\right ) \tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )^{8}-\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )^{16}+8 \tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )^{12}-8 \tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )^{4}+1\right )}{8192 \tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-a x +1}}{\sqrt {2}}\right )}{2}\right )^{8} a \,c^{4}} \] Input:

int((a*x+1)^3/(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^(7/2),x)
 

Output:

(sqrt(c)*sqrt(2)*( - 48*log(tan(asin(sqrt( - a*x + 1)/sqrt(2))/2))*tan(asi 
n(sqrt( - a*x + 1)/sqrt(2))/2)**8 - tan(asin(sqrt( - a*x + 1)/sqrt(2))/2)* 
*16 + 8*tan(asin(sqrt( - a*x + 1)/sqrt(2))/2)**12 - 8*tan(asin(sqrt( - a*x 
 + 1)/sqrt(2))/2)**4 + 1))/(8192*tan(asin(sqrt( - a*x + 1)/sqrt(2))/2)**8* 
a*c**4)