\(\int \frac {e^{\text {arctanh}(a x)} x^4}{(c-a c x)^4} \, dx\) [376]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 161 \[ \int \frac {e^{\text {arctanh}(a x)} x^4}{(c-a c x)^4} \, dx=-\frac {5 \sqrt {1-a^2 x^2}}{a^5 c^4}+\frac {\left (1-a^2 x^2\right )^{3/2}}{7 a^5 c^4 (1-a x)^5}-\frac {26 \left (1-a^2 x^2\right )^{3/2}}{35 a^5 c^4 (1-a x)^4}+\frac {184 \left (1-a^2 x^2\right )^{3/2}}{105 a^5 c^4 (1-a x)^3}-\frac {4 \left (1-a^2 x^2\right )^{3/2}}{a^5 c^4 (1-a x)^2}+\frac {5 \arcsin (a x)}{a^5 c^4} \] Output:

-5*(-a^2*x^2+1)^(1/2)/a^5/c^4+1/7*(-a^2*x^2+1)^(3/2)/a^5/c^4/(-a*x+1)^5-26 
/35*(-a^2*x^2+1)^(3/2)/a^5/c^4/(-a*x+1)^4+184/105*(-a^2*x^2+1)^(3/2)/a^5/c 
^4/(-a*x+1)^3-4*(-a^2*x^2+1)^(3/2)/a^5/c^4/(-a*x+1)^2+5*arcsin(a*x)/a^5/c^ 
4
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.07 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.59 \[ \int \frac {e^{\text {arctanh}(a x)} x^4}{(c-a c x)^4} \, dx=-\frac {\sqrt {1+a x} \left (124+29 a x-244 a^2 x^2-44 a^3 x^3+105 a^4 x^4\right )-700 \sqrt {2} (-1+a x)^2 \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {3}{2},-\frac {1}{2},\frac {1}{2} (1-a x)\right )}{105 a^5 c^4 (1-a x)^{7/2}} \] Input:

Integrate[(E^ArcTanh[a*x]*x^4)/(c - a*c*x)^4,x]
 

Output:

-1/105*(Sqrt[1 + a*x]*(124 + 29*a*x - 244*a^2*x^2 - 44*a^3*x^3 + 105*a^4*x 
^4) - 700*Sqrt[2]*(-1 + a*x)^2*Hypergeometric2F1[-3/2, -3/2, -1/2, (1 - a* 
x)/2])/(a^5*c^4*(1 - a*x)^(7/2))
 

Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.99, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {6678, 27, 581, 25, 2168, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4 e^{\text {arctanh}(a x)}}{(c-a c x)^4} \, dx\)

\(\Big \downarrow \) 6678

\(\displaystyle c \int \frac {x^4 \sqrt {1-a^2 x^2}}{c^5 (1-a x)^5}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {x^4 \sqrt {1-a^2 x^2}}{(1-a x)^5}dx}{c^4}\)

\(\Big \downarrow \) 581

\(\displaystyle \frac {\frac {\int -\frac {\sqrt {1-a^2 x^2} \left (-5 a^3 x^3+9 a^2 x^2-7 a x+2\right )}{(1-a x)^5}dx}{a^4}+\frac {\left (1-a^2 x^2\right )^{3/2}}{a^5 (1-a x)^2}}{c^4}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\left (1-a^2 x^2\right )^{3/2}}{a^5 (1-a x)^2}-\frac {\int \frac {\sqrt {1-a^2 x^2} \left (-5 a^3 x^3+9 a^2 x^2-7 a x+2\right )}{(1-a x)^5}dx}{a^4}}{c^4}\)

\(\Big \downarrow \) 2168

\(\displaystyle \frac {\frac {\left (1-a^2 x^2\right )^{3/2}}{a^5 (1-a x)^2}-\frac {\int \left (\frac {5 \sqrt {1-a^2 x^2}}{(a x-1)^2}+\frac {6 \sqrt {1-a^2 x^2}}{(a x-1)^3}+\frac {4 \sqrt {1-a^2 x^2}}{(a x-1)^4}+\frac {\sqrt {1-a^2 x^2}}{(a x-1)^5}\right )dx}{a^4}}{c^4}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {\left (1-a^2 x^2\right )^{3/2}}{a^5 (1-a x)^2}-\frac {-\frac {184 \left (1-a^2 x^2\right )^{3/2}}{105 a (1-a x)^3}+\frac {26 \left (1-a^2 x^2\right )^{3/2}}{35 a (1-a x)^4}-\frac {\left (1-a^2 x^2\right )^{3/2}}{7 a (1-a x)^5}+\frac {10 \sqrt {1-a^2 x^2}}{a (1-a x)}-\frac {5 \arcsin (a x)}{a}}{a^4}}{c^4}\)

Input:

Int[(E^ArcTanh[a*x]*x^4)/(c - a*c*x)^4,x]
 

Output:

((1 - a^2*x^2)^(3/2)/(a^5*(1 - a*x)^2) - ((10*Sqrt[1 - a^2*x^2])/(a*(1 - a 
*x)) - (1 - a^2*x^2)^(3/2)/(7*a*(1 - a*x)^5) + (26*(1 - a^2*x^2)^(3/2))/(3 
5*a*(1 - a*x)^4) - (184*(1 - a^2*x^2)^(3/2))/(105*a*(1 - a*x)^3) - (5*ArcS 
in[a*x])/a)/a^4)/c^4
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 581
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol 
] :> Simp[(c + d*x)^(m + n - 1)*((a + b*x^2)^(p + 1)/(b*d^(m - 1)*(m + n + 
2*p + 1))), x] + Simp[1/(d^m*(m + n + 2*p + 1))   Int[(c + d*x)^n*(a + b*x^ 
2)^p*ExpandToSum[d^m*(m + n + 2*p + 1)*x^m - (m + n + 2*p + 1)*(c + d*x)^m 
+ c*(c + d*x)^(m - 2)*(c*(m + n - 1) + c*(m + n + 2*p + 1) + 2*d*(m + n + p 
)*x), x], x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] & 
& IGtQ[m, 1] && NeQ[m + n + 2*p + 1, 0] && (IntegerQ[2*p] || ILtQ[m + n, 0] 
)
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2168
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
 Int[ExpandIntegrand[(a + b*x^2)^p, (d + e*x)^m*Pq, x], x] /; FreeQ[{a, b, 
d, e}, x] && PolyQ[Pq, x] && EqQ[b*d^2 + a*e^2, 0] && EqQ[m + Expon[Pq, x] 
+ 2*p + 1, 0] && ILtQ[m, 0]
 

rule 6678
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.)*((e_.) + (f_.)* 
(x_))^(m_.), x_Symbol] :> Simp[c^n   Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - 
 a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c + d, 
0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1 
, 0]) && IntegerQ[2*p]
 
Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.42

method result size
risch \(\frac {a^{2} x^{2}-1}{a^{5} \sqrt {-a^{2} x^{2}+1}\, c^{4}}+\frac {\frac {5 \arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right )}{a^{4} \sqrt {a^{2}}}+\frac {2 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{7 a^{9} \left (x -\frac {1}{a}\right )^{4}}+\frac {57 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{35 a^{8} \left (x -\frac {1}{a}\right )^{3}}+\frac {446 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{105 a^{7} \left (x -\frac {1}{a}\right )^{2}}+\frac {1024 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{105 a^{6} \left (x -\frac {1}{a}\right )}}{c^{4}}\) \(229\)
default \(\frac {-\frac {\sqrt {-a^{2} x^{2}+1}}{a^{5}}+\frac {5 \arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right )}{a^{4} \sqrt {a^{2}}}+\frac {\frac {16 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 a \left (x -\frac {1}{a}\right )^{2}}-\frac {16 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 \left (x -\frac {1}{a}\right )}}{a^{6}}+\frac {14 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{a^{6} \left (x -\frac {1}{a}\right )}+\frac {\frac {2 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{7 a \left (x -\frac {1}{a}\right )^{4}}-\frac {6 a \left (\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{5 a \left (x -\frac {1}{a}\right )^{3}}-\frac {2 a \left (\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 a \left (x -\frac {1}{a}\right )^{2}}-\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 \left (x -\frac {1}{a}\right )}\right )}{5}\right )}{7}}{a^{8}}+\frac {\frac {9 \sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{5 a \left (x -\frac {1}{a}\right )^{3}}-\frac {18 a \left (\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 a \left (x -\frac {1}{a}\right )^{2}}-\frac {\sqrt {-\left (x -\frac {1}{a}\right )^{2} a^{2}-2 a \left (x -\frac {1}{a}\right )}}{3 \left (x -\frac {1}{a}\right )}\right )}{5}}{a^{7}}}{c^{4}}\) \(484\)

Input:

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x^4/(-a*c*x+c)^4,x,method=_RETURNVERBOSE)
 

Output:

1/a^5*(a^2*x^2-1)/(-a^2*x^2+1)^(1/2)/c^4+(5/a^4/(a^2)^(1/2)*arctan((a^2)^( 
1/2)*x/(-a^2*x^2+1)^(1/2))+2/7/a^9/(x-1/a)^4*(-(x-1/a)^2*a^2-2*a*(x-1/a))^ 
(1/2)+57/35/a^8/(x-1/a)^3*(-(x-1/a)^2*a^2-2*a*(x-1/a))^(1/2)+446/105/a^7/( 
x-1/a)^2*(-(x-1/a)^2*a^2-2*a*(x-1/a))^(1/2)+1024/105/a^6/(x-1/a)*(-(x-1/a) 
^2*a^2-2*a*(x-1/a))^(1/2))/c^4
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.11 \[ \int \frac {e^{\text {arctanh}(a x)} x^4}{(c-a c x)^4} \, dx=-\frac {824 \, a^{4} x^{4} - 3296 \, a^{3} x^{3} + 4944 \, a^{2} x^{2} - 3296 \, a x + 1050 \, {\left (a^{4} x^{4} - 4 \, a^{3} x^{3} + 6 \, a^{2} x^{2} - 4 \, a x + 1\right )} \arctan \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{a x}\right ) + {\left (105 \, a^{4} x^{4} - 1444 \, a^{3} x^{3} + 3256 \, a^{2} x^{2} - 2771 \, a x + 824\right )} \sqrt {-a^{2} x^{2} + 1} + 824}{105 \, {\left (a^{9} c^{4} x^{4} - 4 \, a^{8} c^{4} x^{3} + 6 \, a^{7} c^{4} x^{2} - 4 \, a^{6} c^{4} x + a^{5} c^{4}\right )}} \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^4/(-a*c*x+c)^4,x, algorithm="fricas 
")
 

Output:

-1/105*(824*a^4*x^4 - 3296*a^3*x^3 + 4944*a^2*x^2 - 3296*a*x + 1050*(a^4*x 
^4 - 4*a^3*x^3 + 6*a^2*x^2 - 4*a*x + 1)*arctan((sqrt(-a^2*x^2 + 1) - 1)/(a 
*x)) + (105*a^4*x^4 - 1444*a^3*x^3 + 3256*a^2*x^2 - 2771*a*x + 824)*sqrt(- 
a^2*x^2 + 1) + 824)/(a^9*c^4*x^4 - 4*a^8*c^4*x^3 + 6*a^7*c^4*x^2 - 4*a^6*c 
^4*x + a^5*c^4)
 

Sympy [F]

\[ \int \frac {e^{\text {arctanh}(a x)} x^4}{(c-a c x)^4} \, dx=\frac {\int \frac {x^{4}}{a^{4} x^{4} \sqrt {- a^{2} x^{2} + 1} - 4 a^{3} x^{3} \sqrt {- a^{2} x^{2} + 1} + 6 a^{2} x^{2} \sqrt {- a^{2} x^{2} + 1} - 4 a x \sqrt {- a^{2} x^{2} + 1} + \sqrt {- a^{2} x^{2} + 1}}\, dx + \int \frac {a x^{5}}{a^{4} x^{4} \sqrt {- a^{2} x^{2} + 1} - 4 a^{3} x^{3} \sqrt {- a^{2} x^{2} + 1} + 6 a^{2} x^{2} \sqrt {- a^{2} x^{2} + 1} - 4 a x \sqrt {- a^{2} x^{2} + 1} + \sqrt {- a^{2} x^{2} + 1}}\, dx}{c^{4}} \] Input:

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*x**4/(-a*c*x+c)**4,x)
 

Output:

(Integral(x**4/(a**4*x**4*sqrt(-a**2*x**2 + 1) - 4*a**3*x**3*sqrt(-a**2*x* 
*2 + 1) + 6*a**2*x**2*sqrt(-a**2*x**2 + 1) - 4*a*x*sqrt(-a**2*x**2 + 1) + 
sqrt(-a**2*x**2 + 1)), x) + Integral(a*x**5/(a**4*x**4*sqrt(-a**2*x**2 + 1 
) - 4*a**3*x**3*sqrt(-a**2*x**2 + 1) + 6*a**2*x**2*sqrt(-a**2*x**2 + 1) - 
4*a*x*sqrt(-a**2*x**2 + 1) + sqrt(-a**2*x**2 + 1)), x))/c**4
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.42 \[ \int \frac {e^{\text {arctanh}(a x)} x^4}{(c-a c x)^4} \, dx=\frac {2 \, \sqrt {-a^{2} x^{2} + 1}}{7 \, {\left (a^{9} c^{4} x^{4} - 4 \, a^{8} c^{4} x^{3} + 6 \, a^{7} c^{4} x^{2} - 4 \, a^{6} c^{4} x + a^{5} c^{4}\right )}} + \frac {57 \, \sqrt {-a^{2} x^{2} + 1}}{35 \, {\left (a^{8} c^{4} x^{3} - 3 \, a^{7} c^{4} x^{2} + 3 \, a^{6} c^{4} x - a^{5} c^{4}\right )}} + \frac {446 \, \sqrt {-a^{2} x^{2} + 1}}{105 \, {\left (a^{7} c^{4} x^{2} - 2 \, a^{6} c^{4} x + a^{5} c^{4}\right )}} + \frac {1024 \, \sqrt {-a^{2} x^{2} + 1}}{105 \, {\left (a^{6} c^{4} x - a^{5} c^{4}\right )}} + \frac {5 \, \arcsin \left (a x\right )}{a^{5} c^{4}} - \frac {\sqrt {-a^{2} x^{2} + 1}}{a^{5} c^{4}} \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^4/(-a*c*x+c)^4,x, algorithm="maxima 
")
 

Output:

2/7*sqrt(-a^2*x^2 + 1)/(a^9*c^4*x^4 - 4*a^8*c^4*x^3 + 6*a^7*c^4*x^2 - 4*a^ 
6*c^4*x + a^5*c^4) + 57/35*sqrt(-a^2*x^2 + 1)/(a^8*c^4*x^3 - 3*a^7*c^4*x^2 
 + 3*a^6*c^4*x - a^5*c^4) + 446/105*sqrt(-a^2*x^2 + 1)/(a^7*c^4*x^2 - 2*a^ 
6*c^4*x + a^5*c^4) + 1024/105*sqrt(-a^2*x^2 + 1)/(a^6*c^4*x - a^5*c^4) + 5 
*arcsin(a*x)/(a^5*c^4) - sqrt(-a^2*x^2 + 1)/(a^5*c^4)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {e^{\text {arctanh}(a x)} x^4}{(c-a c x)^4} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^4/(-a*c*x+c)^4,x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [B] (verification not implemented)

Time = 14.04 (sec) , antiderivative size = 350, normalized size of antiderivative = 2.17 \[ \int \frac {e^{\text {arctanh}(a x)} x^4}{(c-a c x)^4} \, dx=\frac {2\,\sqrt {1-a^2\,x^2}}{7\,\left (a^9\,c^4\,x^4-4\,a^8\,c^4\,x^3+6\,a^7\,c^4\,x^2-4\,a^6\,c^4\,x+a^5\,c^4\right )}+\frac {572\,\sqrt {1-a^2\,x^2}}{105\,\left (a^7\,c^4\,x^2-2\,a^6\,c^4\,x+a^5\,c^4\right )}+\frac {57\,\sqrt {1-a^2\,x^2}}{35\,\sqrt {-a^2}\,\left (a^3\,c^4\,\sqrt {-a^2}+3\,a^5\,c^4\,x^2\,\sqrt {-a^2}-a^6\,c^4\,x^3\,\sqrt {-a^2}-3\,a^4\,c^4\,x\,\sqrt {-a^2}\right )}-\frac {6\,a^4\,\sqrt {1-a^2\,x^2}}{5\,\left (a^{11}\,c^4\,x^2-2\,a^{10}\,c^4\,x+a^9\,c^4\right )}+\frac {1024\,\sqrt {1-a^2\,x^2}}{105\,\left (a^3\,c^4\,\sqrt {-a^2}-a^4\,c^4\,x\,\sqrt {-a^2}\right )\,\sqrt {-a^2}}-\frac {\sqrt {1-a^2\,x^2}}{a^5\,c^4}+\frac {5\,\mathrm {asinh}\left (x\,\sqrt {-a^2}\right )}{a^4\,c^4\,\sqrt {-a^2}} \] Input:

int((x^4*(a*x + 1))/((1 - a^2*x^2)^(1/2)*(c - a*c*x)^4),x)
 

Output:

(2*(1 - a^2*x^2)^(1/2))/(7*(a^5*c^4 - 4*a^6*c^4*x + 6*a^7*c^4*x^2 - 4*a^8* 
c^4*x^3 + a^9*c^4*x^4)) + (572*(1 - a^2*x^2)^(1/2))/(105*(a^5*c^4 - 2*a^6* 
c^4*x + a^7*c^4*x^2)) + (57*(1 - a^2*x^2)^(1/2))/(35*(-a^2)^(1/2)*(a^3*c^4 
*(-a^2)^(1/2) + 3*a^5*c^4*x^2*(-a^2)^(1/2) - a^6*c^4*x^3*(-a^2)^(1/2) - 3* 
a^4*c^4*x*(-a^2)^(1/2))) - (6*a^4*(1 - a^2*x^2)^(1/2))/(5*(a^9*c^4 - 2*a^1 
0*c^4*x + a^11*c^4*x^2)) + (1024*(1 - a^2*x^2)^(1/2))/(105*(a^3*c^4*(-a^2) 
^(1/2) - a^4*c^4*x*(-a^2)^(1/2))*(-a^2)^(1/2)) - (1 - a^2*x^2)^(1/2)/(a^5* 
c^4) + (5*asinh(x*(-a^2)^(1/2)))/(a^4*c^4*(-a^2)^(1/2))
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 405, normalized size of antiderivative = 2.52 \[ \int \frac {e^{\text {arctanh}(a x)} x^4}{(c-a c x)^4} \, dx=\frac {-525 \mathit {atan} \left (\frac {2 \sqrt {-a^{2} x^{2}+1}\, a^{2} x^{2}-\sqrt {-a^{2} x^{2}+1}}{2 a^{3} x^{3}-2 a x}\right ) a^{4} x^{4}+2100 \mathit {atan} \left (\frac {2 \sqrt {-a^{2} x^{2}+1}\, a^{2} x^{2}-\sqrt {-a^{2} x^{2}+1}}{2 a^{3} x^{3}-2 a x}\right ) a^{3} x^{3}-3150 \mathit {atan} \left (\frac {2 \sqrt {-a^{2} x^{2}+1}\, a^{2} x^{2}-\sqrt {-a^{2} x^{2}+1}}{2 a^{3} x^{3}-2 a x}\right ) a^{2} x^{2}+2100 \mathit {atan} \left (\frac {2 \sqrt {-a^{2} x^{2}+1}\, a^{2} x^{2}-\sqrt {-a^{2} x^{2}+1}}{2 a^{3} x^{3}-2 a x}\right ) a x -525 \mathit {atan} \left (\frac {2 \sqrt {-a^{2} x^{2}+1}\, a^{2} x^{2}-\sqrt {-a^{2} x^{2}+1}}{2 a^{3} x^{3}-2 a x}\right )-210 \sqrt {-a^{2} x^{2}+1}\, a^{4} x^{4}+2888 \sqrt {-a^{2} x^{2}+1}\, a^{3} x^{3}-6512 \sqrt {-a^{2} x^{2}+1}\, a^{2} x^{2}+5542 \sqrt {-a^{2} x^{2}+1}\, a x -1648 \sqrt {-a^{2} x^{2}+1}}{210 a^{5} c^{4} \left (a^{4} x^{4}-4 a^{3} x^{3}+6 a^{2} x^{2}-4 a x +1\right )} \] Input:

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x^4/(-a*c*x+c)^4,x)
 

Output:

( - 525*atan((2*sqrt( - a**2*x**2 + 1)*a**2*x**2 - sqrt( - a**2*x**2 + 1)) 
/(2*a**3*x**3 - 2*a*x))*a**4*x**4 + 2100*atan((2*sqrt( - a**2*x**2 + 1)*a* 
*2*x**2 - sqrt( - a**2*x**2 + 1))/(2*a**3*x**3 - 2*a*x))*a**3*x**3 - 3150* 
atan((2*sqrt( - a**2*x**2 + 1)*a**2*x**2 - sqrt( - a**2*x**2 + 1))/(2*a**3 
*x**3 - 2*a*x))*a**2*x**2 + 2100*atan((2*sqrt( - a**2*x**2 + 1)*a**2*x**2 
- sqrt( - a**2*x**2 + 1))/(2*a**3*x**3 - 2*a*x))*a*x - 525*atan((2*sqrt( - 
 a**2*x**2 + 1)*a**2*x**2 - sqrt( - a**2*x**2 + 1))/(2*a**3*x**3 - 2*a*x)) 
 - 210*sqrt( - a**2*x**2 + 1)*a**4*x**4 + 2888*sqrt( - a**2*x**2 + 1)*a**3 
*x**3 - 6512*sqrt( - a**2*x**2 + 1)*a**2*x**2 + 5542*sqrt( - a**2*x**2 + 1 
)*a*x - 1648*sqrt( - a**2*x**2 + 1))/(210*a**5*c**4*(a**4*x**4 - 4*a**3*x* 
*3 + 6*a**2*x**2 - 4*a*x + 1))