\(\int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} \, dx\) [575]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 123 \[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\frac {8 \sqrt {c-\frac {c}{a x}} x}{\sqrt {1-a x} \sqrt {1+a x}}+\frac {\sqrt {c-\frac {c}{a x}} x \sqrt {1+a x}}{\sqrt {1-a x}}-\frac {7 \sqrt {c-\frac {c}{a x}} \sqrt {x} \text {arcsinh}\left (\sqrt {a} \sqrt {x}\right )}{\sqrt {a} \sqrt {1-a x}} \] Output:

8*(c-c/a/x)^(1/2)*x/(-a*x+1)^(1/2)/(a*x+1)^(1/2)+(c-c/a/x)^(1/2)*x*(a*x+1) 
^(1/2)/(-a*x+1)^(1/2)-7*(c-c/a/x)^(1/2)*x^(1/2)*arcsinh(a^(1/2)*x^(1/2))/a 
^(1/2)/(-a*x+1)^(1/2)
 

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.67 \[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\frac {\sqrt {c-\frac {c}{a x}} \sqrt {x} \left (\frac {8 \sqrt {x}}{\sqrt {1+a x}}+\sqrt {x} \sqrt {1+a x}-\frac {7 \text {arcsinh}\left (\sqrt {a} \sqrt {x}\right )}{\sqrt {a}}\right )}{\sqrt {1-a x}} \] Input:

Integrate[Sqrt[c - c/(a*x)]/E^(3*ArcTanh[a*x]),x]
 

Output:

(Sqrt[c - c/(a*x)]*Sqrt[x]*((8*Sqrt[x])/Sqrt[1 + a*x] + Sqrt[x]*Sqrt[1 + a 
*x] - (7*ArcSinh[Sqrt[a]*Sqrt[x]])/Sqrt[a]))/Sqrt[1 - a*x]
 

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.67, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {6684, 6679, 100, 27, 90, 63, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} \, dx\)

\(\Big \downarrow \) 6684

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \int \frac {e^{-3 \text {arctanh}(a x)} \sqrt {1-a x}}{\sqrt {x}}dx}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 6679

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \int \frac {(1-a x)^2}{\sqrt {x} (a x+1)^{3/2}}dx}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 100

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \left (\frac {8 \sqrt {x}}{\sqrt {a x+1}}-\frac {2 \int \frac {a^2 (3-a x)}{2 \sqrt {x} \sqrt {a x+1}}dx}{a^2}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \left (\frac {8 \sqrt {x}}{\sqrt {a x+1}}-\int \frac {3-a x}{\sqrt {x} \sqrt {a x+1}}dx\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 90

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \left (-\frac {7}{2} \int \frac {1}{\sqrt {x} \sqrt {a x+1}}dx+\sqrt {x} \sqrt {a x+1}+\frac {8 \sqrt {x}}{\sqrt {a x+1}}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 63

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \left (-7 \int \frac {1}{\sqrt {a x+1}}d\sqrt {x}+\sqrt {x} \sqrt {a x+1}+\frac {8 \sqrt {x}}{\sqrt {a x+1}}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {\sqrt {x} \left (-\frac {7 \text {arcsinh}\left (\sqrt {a} \sqrt {x}\right )}{\sqrt {a}}+\sqrt {x} \sqrt {a x+1}+\frac {8 \sqrt {x}}{\sqrt {a x+1}}\right ) \sqrt {c-\frac {c}{a x}}}{\sqrt {1-a x}}\)

Input:

Int[Sqrt[c - c/(a*x)]/E^(3*ArcTanh[a*x]),x]
 

Output:

(Sqrt[c - c/(a*x)]*Sqrt[x]*((8*Sqrt[x])/Sqrt[1 + a*x] + Sqrt[x]*Sqrt[1 + a 
*x] - (7*ArcSinh[Sqrt[a]*Sqrt[x]])/Sqrt[a]))/Sqrt[1 - a*x]
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 63
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2/b   S 
ubst[Int[1/Sqrt[c + d*(x^2/b)], x], x, Sqrt[b*x]], x] /; FreeQ[{b, c, d}, x 
] && GtQ[c, 0]
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 100
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^( 
p_), x_] :> Simp[(b*c - a*d)^2*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d^2*(d 
*e - c*f)*(n + 1))), x] - Simp[1/(d^2*(d*e - c*f)*(n + 1))   Int[(c + d*x)^ 
(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*( 
p + 1)) - 2*a*b*d*(d*e*(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ[n, -1] || (EqQ[n 
 + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 6679
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol 
] :> Simp[c^p   Int[u*(1 + d*(x/c))^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] 
, x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ[p] 
|| GtQ[c, 0])
 

rule 6684
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] 
 :> Simp[x^p*((c + d/x)^p/(1 + c*(x/d))^p)   Int[u*(1 + c*(x/d))^p*(E^(n*Ar 
cTanh[a*x])/x^p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 
 0] &&  !IntegerQ[p]
 
Maple [A] (verified)

Time = 0.21 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.14

method result size
default \(-\frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, x \left (2 a^{\frac {3}{2}} x \sqrt {-x \left (a x +1\right )}+7 \arctan \left (\frac {2 a x +1}{2 \sqrt {a}\, \sqrt {-x \left (a x +1\right )}}\right ) a x +18 \sqrt {a}\, \sqrt {-x \left (a x +1\right )}+7 \arctan \left (\frac {2 a x +1}{2 \sqrt {a}\, \sqrt {-x \left (a x +1\right )}}\right )\right ) \sqrt {-a^{2} x^{2}+1}}{2 \sqrt {a}\, \left (a x +1\right ) \sqrt {-x \left (a x +1\right )}\, \left (a x -1\right )}\) \(140\)
risch \(\frac {\left (a x +1\right ) x \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {\frac {c a x \left (-a^{2} x^{2}+1\right )}{a x -1}}}{\sqrt {-\left (a x +1\right ) a c x}\, \sqrt {-a^{2} x^{2}+1}}+\frac {\left (-\frac {7 \arctan \left (\frac {\sqrt {a^{2} c}\, \left (x +\frac {1}{2 a}\right )}{\sqrt {-a^{2} c \,x^{2}-a c x}}\right )}{2 \sqrt {a^{2} c}}-\frac {8 \sqrt {-\left (x +\frac {1}{a}\right )^{2} a^{2} c +\left (x +\frac {1}{a}\right ) a c}}{a^{2} c \left (x +\frac {1}{a}\right )}\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {\frac {c a x \left (-a^{2} x^{2}+1\right )}{a x -1}}}{\sqrt {-a^{2} x^{2}+1}}\) \(204\)

Input:

int((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/2*(c*(a*x-1)/a/x)^(1/2)*x*(2*a^(3/2)*x*(-x*(a*x+1))^(1/2)+7*arctan(1/2/ 
a^(1/2)*(2*a*x+1)/(-x*(a*x+1))^(1/2))*a*x+18*a^(1/2)*(-x*(a*x+1))^(1/2)+7* 
arctan(1/2/a^(1/2)*(2*a*x+1)/(-x*(a*x+1))^(1/2)))*(-a^2*x^2+1)^(1/2)/a^(1/ 
2)/(a*x+1)/(-x*(a*x+1))^(1/2)/(a*x-1)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 282, normalized size of antiderivative = 2.29 \[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\left [\frac {7 \, {\left (a^{2} x^{2} - 1\right )} \sqrt {-c} \log \left (-\frac {8 \, a^{3} c x^{3} - 7 \, a c x - 4 \, {\left (2 \, a^{2} x^{2} + a x\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {-c} \sqrt {\frac {a c x - c}{a x}} - c}{a x - 1}\right ) - 4 \, {\left (a^{2} x^{2} + 9 \, a x\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {\frac {a c x - c}{a x}}}{4 \, {\left (a^{3} x^{2} - a\right )}}, \frac {7 \, {\left (a^{2} x^{2} - 1\right )} \sqrt {c} \arctan \left (\frac {2 \, \sqrt {-a^{2} x^{2} + 1} a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}}}{2 \, a^{2} c x^{2} - a c x - c}\right ) - 2 \, {\left (a^{2} x^{2} + 9 \, a x\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {\frac {a c x - c}{a x}}}{2 \, {\left (a^{3} x^{2} - a\right )}}\right ] \] Input:

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x, algorithm="frica 
s")
 

Output:

[1/4*(7*(a^2*x^2 - 1)*sqrt(-c)*log(-(8*a^3*c*x^3 - 7*a*c*x - 4*(2*a^2*x^2 
+ a*x)*sqrt(-a^2*x^2 + 1)*sqrt(-c)*sqrt((a*c*x - c)/(a*x)) - c)/(a*x - 1)) 
 - 4*(a^2*x^2 + 9*a*x)*sqrt(-a^2*x^2 + 1)*sqrt((a*c*x - c)/(a*x)))/(a^3*x^ 
2 - a), 1/2*(7*(a^2*x^2 - 1)*sqrt(c)*arctan(2*sqrt(-a^2*x^2 + 1)*a*sqrt(c) 
*x*sqrt((a*c*x - c)/(a*x))/(2*a^2*c*x^2 - a*c*x - c)) - 2*(a^2*x^2 + 9*a*x 
)*sqrt(-a^2*x^2 + 1)*sqrt((a*c*x - c)/(a*x)))/(a^3*x^2 - a)]
 

Sympy [F]

\[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\int \frac {\sqrt {- c \left (-1 + \frac {1}{a x}\right )} \left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}{\left (a x + 1\right )^{3}}\, dx \] Input:

integrate((c-c/a/x)**(1/2)/(a*x+1)**3*(-a**2*x**2+1)**(3/2),x)
 

Output:

Integral(sqrt(-c*(-1 + 1/(a*x)))*(-(a*x - 1)*(a*x + 1))**(3/2)/(a*x + 1)** 
3, x)
 

Maxima [F]

\[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\int { \frac {{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} \sqrt {c - \frac {c}{a x}}}{{\left (a x + 1\right )}^{3}} \,d x } \] Input:

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x, algorithm="maxim 
a")
 

Output:

integrate((-a^2*x^2 + 1)^(3/2)*sqrt(c - c/(a*x))/(a*x + 1)^3, x)
 

Giac [F(-2)]

Exception generated. \[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x, algorithm="giac" 
)
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\int \frac {\sqrt {c-\frac {c}{a\,x}}\,{\left (1-a^2\,x^2\right )}^{3/2}}{{\left (a\,x+1\right )}^3} \,d x \] Input:

int(((c - c/(a*x))^(1/2)*(1 - a^2*x^2)^(3/2))/(a*x + 1)^3,x)
 

Output:

int(((c - c/(a*x))^(1/2)*(1 - a^2*x^2)^(3/2))/(a*x + 1)^3, x)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.51 \[ \int e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}} \, dx=\frac {\sqrt {c}\, i \left (28 \sqrt {a x +1}\, \mathrm {log}\left (\sqrt {a x +1}\, i +\sqrt {x}\, \sqrt {a}\, i \right )-33 \sqrt {a x +1}-4 \sqrt {x}\, \sqrt {a}\, a x -36 \sqrt {x}\, \sqrt {a}\right )}{4 \sqrt {a x +1}\, a} \] Input:

int((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2),x)
 

Output:

(sqrt(c)*i*(28*sqrt(a*x + 1)*log(sqrt(a*x + 1)*i + sqrt(x)*sqrt(a)*i) - 33 
*sqrt(a*x + 1) - 4*sqrt(x)*sqrt(a)*a*x - 36*sqrt(x)*sqrt(a)))/(4*sqrt(a*x 
+ 1)*a)