\(\int \frac {e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx\) [649]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 166 \[ \int \frac {e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=\frac {158 a^2 \sqrt {c-\frac {c}{a x}}}{15 \sqrt {1-a x} \sqrt {1+a x}}-\frac {2 \sqrt {c-\frac {c}{a x}}}{5 x^2 \sqrt {1-a x} \sqrt {1+a x}}+\frac {32 a \sqrt {c-\frac {c}{a x}}}{15 x \sqrt {1-a x} \sqrt {1+a x}}-\frac {316 a^2 \sqrt {c-\frac {c}{a x}} \sqrt {1+a x}}{15 \sqrt {1-a x}} \] Output:

158/15*a^2*(c-c/a/x)^(1/2)/(-a*x+1)^(1/2)/(a*x+1)^(1/2)-2/5*(c-c/a/x)^(1/2 
)/x^2/(-a*x+1)^(1/2)/(a*x+1)^(1/2)+32/15*a*(c-c/a/x)^(1/2)/x/(-a*x+1)^(1/2 
)/(a*x+1)^(1/2)-316/15*a^2*(c-c/a/x)^(1/2)*(a*x+1)^(1/2)/(-a*x+1)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.35 \[ \int \frac {e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=-\frac {2 \sqrt {c-\frac {c}{a x}} \left (3-16 a x+79 a^2 x^2+158 a^3 x^3\right )}{15 x^2 \sqrt {1-a^2 x^2}} \] Input:

Integrate[Sqrt[c - c/(a*x)]/(E^(3*ArcTanh[a*x])*x^3),x]
 

Output:

(-2*Sqrt[c - c/(a*x)]*(3 - 16*a*x + 79*a^2*x^2 + 158*a^3*x^3))/(15*x^2*Sqr 
t[1 - a^2*x^2])
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.67, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {6684, 6679, 100, 27, 87, 55, 48}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx\)

\(\Big \downarrow \) 6684

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \int \frac {e^{-3 \text {arctanh}(a x)} \sqrt {1-a x}}{x^{7/2}}dx}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 6679

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \int \frac {(1-a x)^2}{x^{7/2} (a x+1)^{3/2}}dx}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 100

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \left (\frac {2}{5} \int -\frac {a (16-5 a x)}{2 x^{5/2} (a x+1)^{3/2}}dx-\frac {2}{5 x^{5/2} \sqrt {a x+1}}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \left (-\frac {1}{5} a \int \frac {16-5 a x}{x^{5/2} (a x+1)^{3/2}}dx-\frac {2}{5 x^{5/2} \sqrt {a x+1}}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \left (-\frac {1}{5} a \left (-\frac {79}{3} a \int \frac {1}{x^{3/2} (a x+1)^{3/2}}dx-\frac {32}{3 x^{3/2} \sqrt {a x+1}}\right )-\frac {2}{5 x^{5/2} \sqrt {a x+1}}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 55

\(\displaystyle \frac {\sqrt {x} \sqrt {c-\frac {c}{a x}} \left (-\frac {1}{5} a \left (-\frac {79}{3} a \left (2 \int \frac {1}{x^{3/2} \sqrt {a x+1}}dx+\frac {2}{\sqrt {x} \sqrt {a x+1}}\right )-\frac {32}{3 x^{3/2} \sqrt {a x+1}}\right )-\frac {2}{5 x^{5/2} \sqrt {a x+1}}\right )}{\sqrt {1-a x}}\)

\(\Big \downarrow \) 48

\(\displaystyle \frac {\sqrt {x} \left (-\frac {1}{5} a \left (-\frac {32}{3 x^{3/2} \sqrt {a x+1}}-\frac {79}{3} a \left (\frac {2}{\sqrt {x} \sqrt {a x+1}}-\frac {4 \sqrt {a x+1}}{\sqrt {x}}\right )\right )-\frac {2}{5 x^{5/2} \sqrt {a x+1}}\right ) \sqrt {c-\frac {c}{a x}}}{\sqrt {1-a x}}\)

Input:

Int[Sqrt[c - c/(a*x)]/(E^(3*ArcTanh[a*x])*x^3),x]
 

Output:

(Sqrt[c - c/(a*x)]*Sqrt[x]*(-2/(5*x^(5/2)*Sqrt[1 + a*x]) - (a*(-32/(3*x^(3 
/2)*Sqrt[1 + a*x]) - (79*a*(2/(Sqrt[x]*Sqrt[1 + a*x]) - (4*Sqrt[1 + a*x])/ 
Sqrt[x]))/3))/5))/Sqrt[1 - a*x]
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 48
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp 
[(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{ 
a, b, c, d, m, n}, x] && EqQ[m + n + 2, 0] && NeQ[m, -1]
 

rule 55
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(S 
implify[m + n + 2]/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^Simplify[m + 1]*( 
c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && ILtQ[Simplify[m + n + 
 2], 0] && NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[ 
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (SumSimplerQ[m, 1] ||  !SumSimp 
lerQ[n, 1])
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 100
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^( 
p_), x_] :> Simp[(b*c - a*d)^2*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d^2*(d 
*e - c*f)*(n + 1))), x] - Simp[1/(d^2*(d*e - c*f)*(n + 1))   Int[(c + d*x)^ 
(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*( 
p + 1)) - 2*a*b*d*(d*e*(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ[n, -1] || (EqQ[n 
 + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))
 

rule 6679
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol 
] :> Simp[c^p   Int[u*(1 + d*(x/c))^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x] 
, x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ[p] 
|| GtQ[c, 0])
 

rule 6684
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] 
 :> Simp[x^p*((c + d/x)^p/(1 + c*(x/d))^p)   Int[u*(1 + c*(x/d))^p*(E^(n*Ar 
cTanh[a*x])/x^p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 
 0] &&  !IntegerQ[p]
 
Maple [A] (verified)

Time = 0.21 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.40

method result size
orering \(-\frac {2 \left (158 a^{3} x^{3}+79 a^{2} x^{2}-16 a x +3\right ) \sqrt {c -\frac {c}{a x}}\, \left (-a^{2} x^{2}+1\right )^{\frac {3}{2}}}{15 \left (a x +1\right )^{2} x^{2} \left (a x -1\right )^{2}}\) \(67\)
gosper \(-\frac {2 \left (158 a^{3} x^{3}+79 a^{2} x^{2}-16 a x +3\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \left (-a^{2} x^{2}+1\right )^{\frac {3}{2}}}{15 x^{2} \left (a x +1\right )^{2} \left (a x -1\right )^{2}}\) \(69\)
default \(\frac {2 \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \left (158 a^{3} x^{3}+79 a^{2} x^{2}-16 a x +3\right ) \sqrt {-a^{2} x^{2}+1}}{15 x^{2} \left (a x +1\right ) \left (a x -1\right )}\) \(69\)
risch \(-\frac {2 \left (98 a^{3} x^{3}+79 a^{2} x^{2}-16 a x +3\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {\frac {c a x \left (-a^{2} x^{2}+1\right )}{a x -1}}}{15 x^{2} \sqrt {-\left (a x +1\right ) a c x}\, \sqrt {-a^{2} x^{2}+1}}-\frac {8 a^{3} x \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {\frac {c a x \left (-a^{2} x^{2}+1\right )}{a x -1}}}{\sqrt {-\left (a x +1\right ) a c x}\, \sqrt {-a^{2} x^{2}+1}}\) \(159\)

Input:

int((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/x^3,x,method=_RETURNVERBO 
SE)
 

Output:

-2/15*(158*a^3*x^3+79*a^2*x^2-16*a*x+3)/(a*x+1)^2/x^2/(a*x-1)^2*(c-c/a/x)^ 
(1/2)*(-a^2*x^2+1)^(3/2)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.41 \[ \int \frac {e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=\frac {2 \, {\left (158 \, a^{3} x^{3} + 79 \, a^{2} x^{2} - 16 \, a x + 3\right )} \sqrt {-a^{2} x^{2} + 1} \sqrt {\frac {a c x - c}{a x}}}{15 \, {\left (a^{2} x^{4} - x^{2}\right )}} \] Input:

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/x^3,x, algorithm="f 
ricas")
 

Output:

2/15*(158*a^3*x^3 + 79*a^2*x^2 - 16*a*x + 3)*sqrt(-a^2*x^2 + 1)*sqrt((a*c* 
x - c)/(a*x))/(a^2*x^4 - x^2)
 

Sympy [F]

\[ \int \frac {e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=\int \frac {\sqrt {- c \left (-1 + \frac {1}{a x}\right )} \left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac {3}{2}}}{x^{3} \left (a x + 1\right )^{3}}\, dx \] Input:

integrate((c-c/a/x)**(1/2)/(a*x+1)**3*(-a**2*x**2+1)**(3/2)/x**3,x)
 

Output:

Integral(sqrt(-c*(-1 + 1/(a*x)))*(-(a*x - 1)*(a*x + 1))**(3/2)/(x**3*(a*x 
+ 1)**3), x)
 

Maxima [F]

\[ \int \frac {e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=\int { \frac {{\left (-a^{2} x^{2} + 1\right )}^{\frac {3}{2}} \sqrt {c - \frac {c}{a x}}}{{\left (a x + 1\right )}^{3} x^{3}} \,d x } \] Input:

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/x^3,x, algorithm="m 
axima")
 

Output:

integrate((-a^2*x^2 + 1)^(3/2)*sqrt(c - c/(a*x))/((a*x + 1)^3*x^3), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/x^3,x, algorithm="g 
iac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [B] (verification not implemented)

Time = 14.51 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.60 \[ \int \frac {e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=\frac {\sqrt {c-\frac {c}{a\,x}}\,\left (\frac {2\,\sqrt {1-a^2\,x^2}}{5\,a^2}+\frac {158\,x^2\,\sqrt {1-a^2\,x^2}}{15}-\frac {32\,x\,\sqrt {1-a^2\,x^2}}{15\,a}+\frac {316\,a\,x^3\,\sqrt {1-a^2\,x^2}}{15}\right )}{x^4-\frac {x^2}{a^2}} \] Input:

int(((c - c/(a*x))^(1/2)*(1 - a^2*x^2)^(3/2))/(x^3*(a*x + 1)^3),x)
 

Output:

((c - c/(a*x))^(1/2)*((2*(1 - a^2*x^2)^(1/2))/(5*a^2) + (158*x^2*(1 - a^2* 
x^2)^(1/2))/15 - (32*x*(1 - a^2*x^2)^(1/2))/(15*a) + (316*a*x^3*(1 - a^2*x 
^2)^(1/2))/15))/(x^4 - x^2/a^2)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.43 \[ \int \frac {e^{-3 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a x}}}{x^3} \, dx=\frac {2 \sqrt {c}\, i \left (-158 \sqrt {a x +1}\, a^{3} x^{3}+158 \sqrt {x}\, \sqrt {a}\, a^{3} x^{3}+79 \sqrt {x}\, \sqrt {a}\, a^{2} x^{2}-16 \sqrt {x}\, \sqrt {a}\, a x +3 \sqrt {x}\, \sqrt {a}\right )}{15 \sqrt {a x +1}\, a \,x^{3}} \] Input:

int((c-c/a/x)^(1/2)/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/x^3,x)
 

Output:

(2*sqrt(c)*i*( - 158*sqrt(a*x + 1)*a**3*x**3 + 158*sqrt(x)*sqrt(a)*a**3*x* 
*3 + 79*sqrt(x)*sqrt(a)*a**2*x**2 - 16*sqrt(x)*sqrt(a)*a*x + 3*sqrt(x)*sqr 
t(a)))/(15*sqrt(a*x + 1)*a*x**3)