\(\int \frac {\log (d (a+b x+c x^2)^n)}{(d+e x)^4} \, dx\) [90]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 356 \[ \int \frac {\log \left (d \left (a+b x+c x^2\right )^n\right )}{(d+e x)^4} \, dx=\frac {(2 c d-b e) n}{6 e \left (c d^2-b d e+a e^2\right ) (d+e x)^2}+\frac {\left (2 c^2 d^2+b^2 e^2-2 c e (b d+a e)\right ) n}{3 e \left (c d^2-b d e+a e^2\right )^2 (d+e x)}+\frac {\sqrt {b^2-4 a c} \left (3 c^2 d^2+b^2 e^2-c e (3 b d+a e)\right ) n \text {arctanh}\left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right )}{3 \left (c d^2-b d e+a e^2\right )^3}-\frac {(2 c d-b e) \left (c^2 d^2+b^2 e^2-c e (b d+3 a e)\right ) n \log (d+e x)}{3 e \left (c d^2-b d e+a e^2\right )^3}+\frac {(2 c d-b e) \left (c^2 d^2+b^2 e^2-c e (b d+3 a e)\right ) n \log \left (a+b x+c x^2\right )}{6 e \left (c d^2-b d e+a e^2\right )^3}-\frac {\log \left (d \left (a+b x+c x^2\right )^n\right )}{3 e (d+e x)^3} \] Output:

1/6*(-b*e+2*c*d)*n/e/(a*e^2-b*d*e+c*d^2)/(e*x+d)^2+1/3*(2*c^2*d^2+b^2*e^2- 
2*c*e*(a*e+b*d))*n/e/(a*e^2-b*d*e+c*d^2)^2/(e*x+d)+1/3*(-4*a*c+b^2)^(1/2)* 
(3*c^2*d^2+b^2*e^2-c*e*(a*e+3*b*d))*n*arctanh((2*c*x+b)/(-4*a*c+b^2)^(1/2) 
)/(a*e^2-b*d*e+c*d^2)^3-1/3*(-b*e+2*c*d)*(c^2*d^2+b^2*e^2-c*e*(3*a*e+b*d)) 
*n*ln(e*x+d)/e/(a*e^2-b*d*e+c*d^2)^3+1/6*(-b*e+2*c*d)*(c^2*d^2+b^2*e^2-c*e 
*(3*a*e+b*d))*n*ln(c*x^2+b*x+a)/e/(a*e^2-b*d*e+c*d^2)^3-1/3*ln(d*(c*x^2+b* 
x+a)^n)/e/(e*x+d)^3
 

Mathematica [A] (verified)

Time = 1.13 (sec) , antiderivative size = 310, normalized size of antiderivative = 0.87 \[ \int \frac {\log \left (d \left (a+b x+c x^2\right )^n\right )}{(d+e x)^4} \, dx=\frac {\frac {n (d+e x) \left ((2 c d-b e) \left (c d^2+e (-b d+a e)\right )^2+2 \left (c d^2+e (-b d+a e)\right ) \left (2 c^2 d^2+b^2 e^2-2 c e (b d+a e)\right ) (d+e x)+2 \sqrt {b^2-4 a c} e \left (3 c^2 d^2+b^2 e^2-c e (3 b d+a e)\right ) (d+e x)^2 \text {arctanh}\left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right )-2 (2 c d-b e) \left (c^2 d^2+b^2 e^2-c e (b d+3 a e)\right ) (d+e x)^2 \log (d+e x)+(2 c d-b e) \left (c^2 d^2+b^2 e^2-c e (b d+3 a e)\right ) (d+e x)^2 \log (a+x (b+c x))\right )}{\left (c d^2+e (-b d+a e)\right )^3}-2 \log \left (d (a+x (b+c x))^n\right )}{6 e (d+e x)^3} \] Input:

Integrate[Log[d*(a + b*x + c*x^2)^n]/(d + e*x)^4,x]
 

Output:

((n*(d + e*x)*((2*c*d - b*e)*(c*d^2 + e*(-(b*d) + a*e))^2 + 2*(c*d^2 + e*( 
-(b*d) + a*e))*(2*c^2*d^2 + b^2*e^2 - 2*c*e*(b*d + a*e))*(d + e*x) + 2*Sqr 
t[b^2 - 4*a*c]*e*(3*c^2*d^2 + b^2*e^2 - c*e*(3*b*d + a*e))*(d + e*x)^2*Arc 
Tanh[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]] - 2*(2*c*d - b*e)*(c^2*d^2 + b^2*e^2 - 
 c*e*(b*d + 3*a*e))*(d + e*x)^2*Log[d + e*x] + (2*c*d - b*e)*(c^2*d^2 + b^ 
2*e^2 - c*e*(b*d + 3*a*e))*(d + e*x)^2*Log[a + x*(b + c*x)]))/(c*d^2 + e*( 
-(b*d) + a*e))^3 - 2*Log[d*(a + x*(b + c*x))^n])/(6*e*(d + e*x)^3)
 

Rubi [A] (verified)

Time = 0.91 (sec) , antiderivative size = 341, normalized size of antiderivative = 0.96, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3005, 1200, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\log \left (d \left (a+b x+c x^2\right )^n\right )}{(d+e x)^4} \, dx\)

\(\Big \downarrow \) 3005

\(\displaystyle \frac {n \int \frac {b+2 c x}{(d+e x)^3 \left (c x^2+b x+a\right )}dx}{3 e}-\frac {\log \left (d \left (a+b x+c x^2\right )^n\right )}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 1200

\(\displaystyle \frac {n \int \left (\frac {e (b e-2 c d)}{\left (c d^2-b e d+a e^2\right ) (d+e x)^3}+\frac {e (2 c d-b e) \left (-c^2 d^2-b^2 e^2+c e (b d+3 a e)\right )}{\left (c d^2-b e d+a e^2\right )^3 (d+e x)}+\frac {-e^3 b^4+3 c d e^2 b^3-c e \left (3 c d^2-4 a e^2\right ) b^2+c^2 d \left (c d^2-9 a e^2\right ) b+2 a c^2 e \left (3 c d^2-a e^2\right )+c (2 c d-b e) \left (c^2 d^2+b^2 e^2-c e (b d+3 a e)\right ) x}{\left (c d^2-b e d+a e^2\right )^3 \left (c x^2+b x+a\right )}+\frac {e \left (-2 c^2 d^2-b^2 e^2+2 c e (b d+a e)\right )}{\left (c d^2-b e d+a e^2\right )^2 (d+e x)^2}\right )dx}{3 e}-\frac {\log \left (d \left (a+b x+c x^2\right )^n\right )}{3 e (d+e x)^3}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {n \left (\frac {e \sqrt {b^2-4 a c} \text {arctanh}\left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right ) \left (-c e (a e+3 b d)+b^2 e^2+3 c^2 d^2\right )}{\left (a e^2-b d e+c d^2\right )^3}+\frac {(2 c d-b e) \left (-c e (3 a e+b d)+b^2 e^2+c^2 d^2\right ) \log \left (a+b x+c x^2\right )}{2 \left (a e^2-b d e+c d^2\right )^3}+\frac {-2 c e (a e+b d)+b^2 e^2+2 c^2 d^2}{(d+e x) \left (a e^2-b d e+c d^2\right )^2}-\frac {(2 c d-b e) \log (d+e x) \left (-c e (3 a e+b d)+b^2 e^2+c^2 d^2\right )}{\left (a e^2-b d e+c d^2\right )^3}+\frac {2 c d-b e}{2 (d+e x)^2 \left (a e^2-b d e+c d^2\right )}\right )}{3 e}-\frac {\log \left (d \left (a+b x+c x^2\right )^n\right )}{3 e (d+e x)^3}\)

Input:

Int[Log[d*(a + b*x + c*x^2)^n]/(d + e*x)^4,x]
 

Output:

(n*((2*c*d - b*e)/(2*(c*d^2 - b*d*e + a*e^2)*(d + e*x)^2) + (2*c^2*d^2 + b 
^2*e^2 - 2*c*e*(b*d + a*e))/((c*d^2 - b*d*e + a*e^2)^2*(d + e*x)) + (Sqrt[ 
b^2 - 4*a*c]*e*(3*c^2*d^2 + b^2*e^2 - c*e*(3*b*d + a*e))*ArcTanh[(b + 2*c* 
x)/Sqrt[b^2 - 4*a*c]])/(c*d^2 - b*d*e + a*e^2)^3 - ((2*c*d - b*e)*(c^2*d^2 
 + b^2*e^2 - c*e*(b*d + 3*a*e))*Log[d + e*x])/(c*d^2 - b*d*e + a*e^2)^3 + 
((2*c*d - b*e)*(c^2*d^2 + b^2*e^2 - c*e*(b*d + 3*a*e))*Log[a + b*x + c*x^2 
])/(2*(c*d^2 - b*d*e + a*e^2)^3)))/(3*e) - Log[d*(a + b*x + c*x^2)^n]/(3*e 
*(d + e*x)^3)
 

Defintions of rubi rules used

rule 1200
Int[(((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.))/((a_.) + (b_.)* 
(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*((f + g* 
x)^n/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && In 
tegersQ[n]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3005
Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_. 
), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a + b*Log[c*RFx^p])^n/(e*(m + 1))) 
, x] - Simp[b*n*(p/(e*(m + 1)))   Int[SimplifyIntegrand[(d + e*x)^(m + 1)*( 
a + b*Log[c*RFx^p])^(n - 1)*(D[RFx, x]/RFx), x], x], x] /; FreeQ[{a, b, c, 
d, e, m, p}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] && (EqQ[n, 1] || 
 IntegerQ[m]) && NeQ[m, -1]
 
Maple [A] (verified)

Time = 4.46 (sec) , antiderivative size = 486, normalized size of antiderivative = 1.37

method result size
parts \(-\frac {\ln \left (d \left (c \,x^{2}+b x +a \right )^{n}\right )}{3 e \left (e x +d \right )^{3}}+\frac {n \left (-\frac {2 a c \,e^{2}-b^{2} e^{2}+2 b c d e -2 c^{2} d^{2}}{\left (a \,e^{2}-b d e +d^{2} c \right )^{2} \left (e x +d \right )}-\frac {\left (3 a b c \,e^{3}-6 a \,c^{2} d \,e^{2}-b^{3} e^{3}+3 b^{2} c d \,e^{2}-3 b \,c^{2} d^{2} e +2 c^{3} d^{3}\right ) \ln \left (e x +d \right )}{\left (a \,e^{2}-b d e +d^{2} c \right )^{3}}-\frac {b e -2 c d}{2 \left (a \,e^{2}-b d e +d^{2} c \right ) \left (e x +d \right )^{2}}+\frac {\frac {\left (3 a b \,c^{2} e^{3}-6 a \,c^{3} e^{2} d -b^{3} c \,e^{3}+3 b^{2} c^{2} d \,e^{2}-3 b \,c^{3} d^{2} e +2 c^{4} d^{3}\right ) \ln \left (c \,x^{2}+b x +a \right )}{2 c}+\frac {2 \left (-2 a^{2} c^{2} e^{3}+4 a \,b^{2} c \,e^{3}-9 a b \,c^{2} d \,e^{2}+6 a \,c^{3} d^{2} e -b^{4} e^{3}+3 b^{3} c d \,e^{2}-3 b^{2} c^{2} d^{2} e +b \,c^{3} d^{3}-\frac {\left (3 a b \,c^{2} e^{3}-6 a \,c^{3} e^{2} d -b^{3} c \,e^{3}+3 b^{2} c^{2} d \,e^{2}-3 b \,c^{3} d^{2} e +2 c^{4} d^{3}\right ) b}{2 c}\right ) \arctan \left (\frac {2 x c +b}{\sqrt {4 a c -b^{2}}}\right )}{\sqrt {4 a c -b^{2}}}}{\left (a \,e^{2}-b d e +d^{2} c \right )^{3}}\right )}{3 e}\) \(486\)
risch \(\text {Expression too large to display}\) \(72038\)

Input:

int(ln(d*(c*x^2+b*x+a)^n)/(e*x+d)^4,x,method=_RETURNVERBOSE)
 

Output:

-1/3*ln(d*(c*x^2+b*x+a)^n)/e/(e*x+d)^3+1/3/e*n*(-(2*a*c*e^2-b^2*e^2+2*b*c* 
d*e-2*c^2*d^2)/(a*e^2-b*d*e+c*d^2)^2/(e*x+d)-(3*a*b*c*e^3-6*a*c^2*d*e^2-b^ 
3*e^3+3*b^2*c*d*e^2-3*b*c^2*d^2*e+2*c^3*d^3)/(a*e^2-b*d*e+c*d^2)^3*ln(e*x+ 
d)-1/2*(b*e-2*c*d)/(a*e^2-b*d*e+c*d^2)/(e*x+d)^2+1/(a*e^2-b*d*e+c*d^2)^3*( 
1/2*(3*a*b*c^2*e^3-6*a*c^3*d*e^2-b^3*c*e^3+3*b^2*c^2*d*e^2-3*b*c^3*d^2*e+2 
*c^4*d^3)/c*ln(c*x^2+b*x+a)+2*(-2*a^2*c^2*e^3+4*a*b^2*c*e^3-9*a*b*c^2*d*e^ 
2+6*a*c^3*d^2*e-b^4*e^3+3*b^3*c*d*e^2-3*b^2*c^2*d^2*e+b*c^3*d^3-1/2*(3*a*b 
*c^2*e^3-6*a*c^3*d*e^2-b^3*c*e^3+3*b^2*c^2*d*e^2-3*b*c^3*d^2*e+2*c^4*d^3)* 
b/c)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1496 vs. \(2 (340) = 680\).

Time = 8.13 (sec) , antiderivative size = 3013, normalized size of antiderivative = 8.46 \[ \int \frac {\log \left (d \left (a+b x+c x^2\right )^n\right )}{(d+e x)^4} \, dx=\text {Too large to display} \] Input:

integrate(log(d*(c*x^2+b*x+a)^n)/(e*x+d)^4,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\log \left (d \left (a+b x+c x^2\right )^n\right )}{(d+e x)^4} \, dx=\text {Timed out} \] Input:

integrate(ln(d*(c*x**2+b*x+a)**n)/(e*x+d)**4,x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\log \left (d \left (a+b x+c x^2\right )^n\right )}{(d+e x)^4} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(log(d*(c*x^2+b*x+a)^n)/(e*x+d)^4,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` for 
 more deta
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1128 vs. \(2 (340) = 680\).

Time = 0.21 (sec) , antiderivative size = 1128, normalized size of antiderivative = 3.17 \[ \int \frac {\log \left (d \left (a+b x+c x^2\right )^n\right )}{(d+e x)^4} \, dx =\text {Too large to display} \] Input:

integrate(log(d*(c*x^2+b*x+a)^n)/(e*x+d)^4,x, algorithm="giac")
 

Output:

1/6*(2*c^3*d^3*n - 3*b*c^2*d^2*e*n + 3*b^2*c*d*e^2*n - 6*a*c^2*d*e^2*n - b 
^3*e^3*n + 3*a*b*c*e^3*n)*log(c*x^2 + b*x + a)/(c^3*d^6*e - 3*b*c^2*d^5*e^ 
2 + 3*b^2*c*d^4*e^3 + 3*a*c^2*d^4*e^3 - b^3*d^3*e^4 - 6*a*b*c*d^3*e^4 + 3* 
a*b^2*d^2*e^5 + 3*a^2*c*d^2*e^5 - 3*a^2*b*d*e^6 + a^3*e^7) - 1/3*n*log(c*x 
^2 + b*x + a)/(e^4*x^3 + 3*d*e^3*x^2 + 3*d^2*e^2*x + d^3*e) - 1/3*(2*c^3*d 
^3*n - 3*b*c^2*d^2*e*n + 3*b^2*c*d*e^2*n - 6*a*c^2*d*e^2*n - b^3*e^3*n + 3 
*a*b*c*e^3*n)*log(e*x + d)/(c^3*d^6*e - 3*b*c^2*d^5*e^2 + 3*b^2*c*d^4*e^3 
+ 3*a*c^2*d^4*e^3 - b^3*d^3*e^4 - 6*a*b*c*d^3*e^4 + 3*a*b^2*d^2*e^5 + 3*a^ 
2*c*d^2*e^5 - 3*a^2*b*d*e^6 + a^3*e^7) - 1/3*(3*b^2*c^2*d^2*n - 12*a*c^3*d 
^2*n - 3*b^3*c*d*e*n + 12*a*b*c^2*d*e*n + b^4*e^2*n - 5*a*b^2*c*e^2*n + 4* 
a^2*c^2*e^2*n)*arctan((2*c*x + b)/sqrt(-b^2 + 4*a*c))/((c^3*d^6 - 3*b*c^2* 
d^5*e + 3*b^2*c*d^4*e^2 + 3*a*c^2*d^4*e^2 - b^3*d^3*e^3 - 6*a*b*c*d^3*e^3 
+ 3*a*b^2*d^2*e^4 + 3*a^2*c*d^2*e^4 - 3*a^2*b*d*e^5 + a^3*e^6)*sqrt(-b^2 + 
 4*a*c)) + 1/6*(4*c^2*d^2*e^2*n*x^2 - 4*b*c*d*e^3*n*x^2 + 2*b^2*e^4*n*x^2 
- 4*a*c*e^4*n*x^2 + 10*c^2*d^3*e*n*x - 11*b*c*d^2*e^2*n*x + 5*b^2*d*e^3*n* 
x - 6*a*c*d*e^3*n*x - a*b*e^4*n*x + 6*c^2*d^4*n - 7*b*c*d^3*e*n + 3*b^2*d^ 
2*e^2*n - 2*a*c*d^2*e^2*n - a*b*d*e^3*n - 2*c^2*d^4*log(d) + 4*b*c*d^3*e*l 
og(d) - 2*b^2*d^2*e^2*log(d) - 4*a*c*d^2*e^2*log(d) + 4*a*b*d*e^3*log(d) - 
 2*a^2*e^4*log(d))/(c^2*d^4*e^4*x^3 - 2*b*c*d^3*e^5*x^3 + b^2*d^2*e^6*x^3 
+ 2*a*c*d^2*e^6*x^3 - 2*a*b*d*e^7*x^3 + a^2*e^8*x^3 + 3*c^2*d^5*e^3*x^2...
 

Mupad [B] (verification not implemented)

Time = 43.24 (sec) , antiderivative size = 2707, normalized size of antiderivative = 7.60 \[ \int \frac {\log \left (d \left (a+b x+c x^2\right )^n\right )}{(d+e x)^4} \, dx=\text {Too large to display} \] Input:

int(log(d*(a + b*x + c*x^2)^n)/(d + e*x)^4,x)
 

Output:

(log(d + e*x)*(e^3*(b^3*n - 3*a*b*c*n) + e^2*(6*a*c^2*d*n - 3*b^2*c*d*n) - 
 2*c^3*d^3*n + 3*b*c^2*d^2*e*n))/(3*a^3*e^7 + 3*c^3*d^6*e - 3*b^3*d^3*e^4 
+ 9*a*b^2*d^2*e^5 + 9*a*c^2*d^4*e^3 + 9*a^2*c*d^2*e^5 - 9*b*c^2*d^5*e^2 + 
9*b^2*c*d^4*e^3 - 9*a^2*b*d*e^6 - 18*a*b*c*d^3*e^4) - (log(32*a*b^5*e^5 - 
2*a*e^5*(b^2 - 4*a*c)^(5/2) - 192*a*c^5*d^5 + 32*b^6*e^5*x + 48*b^2*c^4*d^ 
5 - 18*b^3*e^5*x*(b^2 - 4*a*c)^(3/2) - 3*b^5*e^5*x*(b^2 - 4*a*c)^(1/2) + 9 
6*c^5*d^5*x*(b^2 - 4*a*c)^(1/2) - 208*a^2*b^3*c*e^5 + 320*a^3*b*c^2*e^5 - 
704*a^3*c^3*d*e^4 - 48*b^3*c^3*d^4*e - 16*b^5*c*d^2*e^3 - 64*a^3*c^3*e^5*x 
 + 1152*a^2*c^4*d^3*e^2 + 48*b^4*c^2*d^3*e^2 - 33*b*d*e^4*(b^2 - 4*a*c)^(5 
/2) - 11*b*e^5*x*(b^2 - 4*a*c)^(5/2) - 24*a*b^2*e^5*(b^2 - 4*a*c)^(3/2) - 
6*a*b^4*e^5*(b^2 - 4*a*c)^(1/2) + 48*b*c^4*d^5*(b^2 - 4*a*c)^(1/2) + 18*b^ 
3*d*e^4*(b^2 - 4*a*c)^(3/2) + 15*b^5*d*e^4*(b^2 - 4*a*c)^(1/2) + 44*c*d^2* 
e^3*(b^2 - 4*a*c)^(5/2) + 72*c^3*d^4*e*(b^2 - 4*a*c)^(3/2) + 22*c*d*e^4*x* 
(b^2 - 4*a*c)^(5/2) + 192*a*b*c^4*d^4*e - 128*a*b^4*c*d*e^4 + 120*b^3*c^2* 
d^3*e^2*(b^2 - 4*a*c)^(1/2) - 224*a*b^4*c*e^5*x - 576*a*c^5*d^4*e*x - 160* 
b^5*c*d*e^4*x + 144*b^2*c^4*d^4*e*x - 72*b*c^2*d^3*e^2*(b^2 - 4*a*c)^(3/2) 
 - 120*b^2*c^3*d^4*e*(b^2 - 4*a*c)^(1/2) - 60*b^4*c*d^2*e^3*(b^2 - 4*a*c)^ 
(1/2) + 144*c^3*d^3*e^2*x*(b^2 - 4*a*c)^(3/2) - 480*a*b^2*c^3*d^3*e^2 + 32 
0*a*b^3*c^2*d^2*e^3 - 1024*a^2*b*c^3*d^2*e^3 + 688*a^2*b^2*c^2*d*e^4 + 400 
*a^2*b^2*c^2*e^5*x + 1408*a^2*c^4*d^2*e^3*x - 288*b^3*c^3*d^3*e^2*x + 3...
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 3818, normalized size of antiderivative = 10.72 \[ \int \frac {\log \left (d \left (a+b x+c x^2\right )^n\right )}{(d+e x)^4} \, dx =\text {Too large to display} \] Input:

int(log(d*(c*x^2+b*x+a)^n)/(e*x+d)^4,x)
 

Output:

( - 6*sqrt(4*a*c - b**2)*atan((b + 2*c*x)/sqrt(4*a*c - b**2))*a*c*d**6*e** 
3*n - 18*sqrt(4*a*c - b**2)*atan((b + 2*c*x)/sqrt(4*a*c - b**2))*a*c*d**5* 
e**4*n*x - 18*sqrt(4*a*c - b**2)*atan((b + 2*c*x)/sqrt(4*a*c - b**2))*a*c* 
d**4*e**5*n*x**2 - 6*sqrt(4*a*c - b**2)*atan((b + 2*c*x)/sqrt(4*a*c - b**2 
))*a*c*d**3*e**6*n*x**3 + 6*sqrt(4*a*c - b**2)*atan((b + 2*c*x)/sqrt(4*a*c 
 - b**2))*b**2*d**6*e**3*n + 18*sqrt(4*a*c - b**2)*atan((b + 2*c*x)/sqrt(4 
*a*c - b**2))*b**2*d**5*e**4*n*x + 18*sqrt(4*a*c - b**2)*atan((b + 2*c*x)/ 
sqrt(4*a*c - b**2))*b**2*d**4*e**5*n*x**2 + 6*sqrt(4*a*c - b**2)*atan((b + 
 2*c*x)/sqrt(4*a*c - b**2))*b**2*d**3*e**6*n*x**3 - 18*sqrt(4*a*c - b**2)* 
atan((b + 2*c*x)/sqrt(4*a*c - b**2))*b*c*d**7*e**2*n - 54*sqrt(4*a*c - b** 
2)*atan((b + 2*c*x)/sqrt(4*a*c - b**2))*b*c*d**6*e**3*n*x - 54*sqrt(4*a*c 
- b**2)*atan((b + 2*c*x)/sqrt(4*a*c - b**2))*b*c*d**5*e**4*n*x**2 - 18*sqr 
t(4*a*c - b**2)*atan((b + 2*c*x)/sqrt(4*a*c - b**2))*b*c*d**4*e**5*n*x**3 
+ 18*sqrt(4*a*c - b**2)*atan((b + 2*c*x)/sqrt(4*a*c - b**2))*c**2*d**8*e*n 
 + 54*sqrt(4*a*c - b**2)*atan((b + 2*c*x)/sqrt(4*a*c - b**2))*c**2*d**7*e* 
*2*n*x + 54*sqrt(4*a*c - b**2)*atan((b + 2*c*x)/sqrt(4*a*c - b**2))*c**2*d 
**6*e**3*n*x**2 + 18*sqrt(4*a*c - b**2)*atan((b + 2*c*x)/sqrt(4*a*c - b**2 
))*c**2*d**5*e**4*n*x**3 - 6*log(a + b*x + c*x**2)*a**3*d**3*e**6*n - 18*l 
og(a + b*x + c*x**2)*a**3*d**2*e**7*n*x - 18*log(a + b*x + c*x**2)*a**3*d* 
e**8*n*x**2 - 6*log(a + b*x + c*x**2)*a**3*e**9*n*x**3 + 18*log(a + b*x...