\(\int (f+g x)^2 (A+B \log (\frac {e (a+b x)^2}{(c+d x)^2})) \, dx\) [264]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 152 \[ \int (f+g x)^2 \left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right ) \, dx=-\frac {2 B (b c-a d) g (3 b d f-b c g-a d g) x}{3 b^2 d^2}-\frac {B (b c-a d) g^2 x^2}{3 b d}-\frac {2 B (b f-a g)^3 \log (a+b x)}{3 b^3 g}+\frac {(f+g x)^3 \left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right )}{3 g}+\frac {2 B (d f-c g)^3 \log (c+d x)}{3 d^3 g} \] Output:

-2/3*B*(-a*d+b*c)*g*(-a*d*g-b*c*g+3*b*d*f)*x/b^2/d^2-1/3*B*(-a*d+b*c)*g^2* 
x^2/b/d-2/3*B*(-a*g+b*f)^3*ln(b*x+a)/b^3/g+1/3*(g*x+f)^3*(A+B*ln(e*(b*x+a) 
^2/(d*x+c)^2))/g+2/3*B*(-c*g+d*f)^3*ln(d*x+c)/d^3/g
 

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.93 \[ \int (f+g x)^2 \left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right ) \, dx=\frac {(f+g x)^3 \left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right )-\frac {B \left (2 b d (b c-a d) g^2 (3 b d f-b c g-a d g) x+b^2 d^2 (b c-a d) g^3 x^2+2 d^3 (b f-a g)^3 \log (a+b x)-2 b^3 (d f-c g)^3 \log (c+d x)\right )}{b^3 d^3}}{3 g} \] Input:

Integrate[(f + g*x)^2*(A + B*Log[(e*(a + b*x)^2)/(c + d*x)^2]),x]
 

Output:

((f + g*x)^3*(A + B*Log[(e*(a + b*x)^2)/(c + d*x)^2]) - (B*(2*b*d*(b*c - a 
*d)*g^2*(3*b*d*f - b*c*g - a*d*g)*x + b^2*d^2*(b*c - a*d)*g^3*x^2 + 2*d^3* 
(b*f - a*g)^3*Log[a + b*x] - 2*b^3*(d*f - c*g)^3*Log[c + d*x]))/(b^3*d^3)) 
/(3*g)
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.03, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {2948, 93, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (f+g x)^2 \left (B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )+A\right ) \, dx\)

\(\Big \downarrow \) 2948

\(\displaystyle \frac {(f+g x)^3 \left (B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )+A\right )}{3 g}-\frac {2 B (b c-a d) \int \frac {(f+g x)^3}{(a+b x) (c+d x)}dx}{3 g}\)

\(\Big \downarrow \) 93

\(\displaystyle \frac {(f+g x)^3 \left (B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )+A\right )}{3 g}-\frac {2 B (b c-a d) \int \left (\frac {x g^3}{b d}+\frac {(3 b d f-b c g-a d g) g^2}{b^2 d^2}+\frac {(b f-a g)^3}{b^2 (b c-a d) (a+b x)}+\frac {(d f-c g)^3}{d^2 (a d-b c) (c+d x)}\right )dx}{3 g}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {(f+g x)^3 \left (B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )+A\right )}{3 g}-\frac {2 B (b c-a d) \left (\frac {(b f-a g)^3 \log (a+b x)}{b^3 (b c-a d)}+\frac {g^2 x (-a d g-b c g+3 b d f)}{b^2 d^2}-\frac {(d f-c g)^3 \log (c+d x)}{d^3 (b c-a d)}+\frac {g^3 x^2}{2 b d}\right )}{3 g}\)

Input:

Int[(f + g*x)^2*(A + B*Log[(e*(a + b*x)^2)/(c + d*x)^2]),x]
 

Output:

((f + g*x)^3*(A + B*Log[(e*(a + b*x)^2)/(c + d*x)^2]))/(3*g) - (2*B*(b*c - 
 a*d)*((g^2*(3*b*d*f - b*c*g - a*d*g)*x)/(b^2*d^2) + (g^3*x^2)/(2*b*d) + ( 
(b*f - a*g)^3*Log[a + b*x])/(b^3*(b*c - a*d)) - ((d*f - c*g)^3*Log[c + d*x 
])/(d^3*(b*c - a*d))))/(3*g)
 

Defintions of rubi rules used

rule 93
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), 
x_] :> Int[ExpandIntegrand[(e + f*x)^p/((a + b*x)*(c + d*x)), x], x] /; Fre 
eQ[{a, b, c, d, e, f}, x] && IntegerQ[p]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2948
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_ 
)]*(B_.))*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[(f + g*x)^(m + 1)*( 
(A + B*Log[e*((a + b*x)^n/(c + d*x)^n)])/(g*(m + 1))), x] - Simp[B*n*((b*c 
- a*d)/(g*(m + 1)))   Int[(f + g*x)^(m + 1)/((a + b*x)*(c + d*x)), x], x] / 
; FreeQ[{a, b, c, d, e, f, g, A, B, m, n}, x] && EqQ[n + mn, 0] && NeQ[b*c 
- a*d, 0] && NeQ[m, -1] &&  !(EqQ[m, -2] && IntegerQ[n])
 
Maple [A] (verified)

Time = 1.02 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.78

method result size
risch \(\frac {\left (g x +f \right )^{3} B \ln \left (\frac {e \left (b x +a \right )^{2}}{\left (d x +c \right )^{2}}\right )}{3 g}+\frac {g^{2} A \,x^{3}}{3}+g A f \,x^{2}+\frac {g^{2} B a \,x^{2}}{3 b}-\frac {g^{2} B c \,x^{2}}{3 d}+A \,f^{2} x -\frac {2 g^{2} B \ln \left (d x +c \right ) c^{3}}{3 d^{3}}+\frac {2 g B \ln \left (d x +c \right ) c^{2} f}{d^{2}}-\frac {2 B \ln \left (d x +c \right ) c \,f^{2}}{d}+\frac {2 B \ln \left (d x +c \right ) f^{3}}{3 g}+\frac {2 g^{2} B \ln \left (-b x -a \right ) a^{3}}{3 b^{3}}-\frac {2 g B \ln \left (-b x -a \right ) a^{2} f}{b^{2}}+\frac {2 B \ln \left (-b x -a \right ) a \,f^{2}}{b}-\frac {2 B \ln \left (-b x -a \right ) f^{3}}{3 g}-\frac {2 g^{2} B \,a^{2} x}{3 b^{2}}+\frac {2 g B a f x}{b}+\frac {2 g^{2} B \,c^{2} x}{3 d^{2}}-\frac {2 g B c f x}{d}\) \(270\)
parts \(\frac {A \left (g x +f \right )^{3}}{3 g}-\frac {B \left (\left (-\left (d x +c \right ) \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )-\left (-2 d a +2 b c \right ) \left (\frac {\left (-d a +b c \right ) \ln \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )}{b \left (d a -b c \right )}+\frac {\ln \left (\frac {1}{d x +c}\right )}{b}\right )\right ) \left (c^{2} g^{2}-2 c d f g +d^{2} f^{2}\right )-2 \left (-\frac {\left (d x +c \right )^{2} \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )}{2}-\left (-d a +b c \right ) \left (\frac {\left (d a -b c \right ) \ln \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )}{b^{2}}-\frac {d x +c}{b}+\frac {\left (-d a +b c \right ) \ln \left (\frac {1}{d x +c}\right )}{b^{2}}\right )\right ) g \left (c g -d f \right )+\left (-\frac {\left (d x +c \right )^{3} \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )}{3}-\left (-\frac {2 d a}{3}+\frac {2 b c}{3}\right ) \left (-\frac {\left (d a -b c \right )^{2} \ln \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )}{b^{3}}-\frac {\left (d x +c \right )^{2}}{2 b}-\frac {\left (-d a +b c \right ) \left (d x +c \right )}{b^{2}}+\frac {\left (a^{2} d^{2}-2 a c d b +c^{2} b^{2}\right ) \ln \left (\frac {1}{d x +c}\right )}{b^{3}}\right )\right ) g^{2}\right )}{d^{3}}\) \(441\)
derivativedivides \(-\frac {\frac {A \left (-\left (c^{2} g^{2}-2 c d f g +d^{2} f^{2}\right ) \left (d x +c \right )+g \left (c g -d f \right ) \left (d x +c \right )^{2}-\frac {g^{2} \left (d x +c \right )^{3}}{3}\right )}{d^{2}}+\frac {B \left (\left (-\left (d x +c \right ) \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )-\left (-2 d a +2 b c \right ) \left (\frac {\left (-d a +b c \right ) \ln \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )}{b \left (d a -b c \right )}+\frac {\ln \left (\frac {1}{d x +c}\right )}{b}\right )\right ) \left (c^{2} g^{2}-2 c d f g +d^{2} f^{2}\right )-2 \left (-\frac {\left (d x +c \right )^{2} \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )}{2}-\left (-d a +b c \right ) \left (\frac {\left (d a -b c \right ) \ln \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )}{b^{2}}-\frac {d x +c}{b}+\frac {\left (-d a +b c \right ) \ln \left (\frac {1}{d x +c}\right )}{b^{2}}\right )\right ) g \left (c g -d f \right )+\left (-\frac {\left (d x +c \right )^{3} \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )}{3}-\left (-\frac {2 d a}{3}+\frac {2 b c}{3}\right ) \left (-\frac {\left (d a -b c \right )^{2} \ln \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )}{b^{3}}-\frac {\left (d x +c \right )^{2}}{2 b}-\frac {\left (-d a +b c \right ) \left (d x +c \right )}{b^{2}}+\frac {\left (a^{2} d^{2}-2 a c d b +c^{2} b^{2}\right ) \ln \left (\frac {1}{d x +c}\right )}{b^{3}}\right )\right ) g^{2}\right )}{d^{2}}}{d}\) \(495\)
default \(-\frac {\frac {A \left (-\left (c^{2} g^{2}-2 c d f g +d^{2} f^{2}\right ) \left (d x +c \right )+g \left (c g -d f \right ) \left (d x +c \right )^{2}-\frac {g^{2} \left (d x +c \right )^{3}}{3}\right )}{d^{2}}+\frac {B \left (\left (-\left (d x +c \right ) \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )-\left (-2 d a +2 b c \right ) \left (\frac {\left (-d a +b c \right ) \ln \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )}{b \left (d a -b c \right )}+\frac {\ln \left (\frac {1}{d x +c}\right )}{b}\right )\right ) \left (c^{2} g^{2}-2 c d f g +d^{2} f^{2}\right )-2 \left (-\frac {\left (d x +c \right )^{2} \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )}{2}-\left (-d a +b c \right ) \left (\frac {\left (d a -b c \right ) \ln \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )}{b^{2}}-\frac {d x +c}{b}+\frac {\left (-d a +b c \right ) \ln \left (\frac {1}{d x +c}\right )}{b^{2}}\right )\right ) g \left (c g -d f \right )+\left (-\frac {\left (d x +c \right )^{3} \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )}{3}-\left (-\frac {2 d a}{3}+\frac {2 b c}{3}\right ) \left (-\frac {\left (d a -b c \right )^{2} \ln \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )}{b^{3}}-\frac {\left (d x +c \right )^{2}}{2 b}-\frac {\left (-d a +b c \right ) \left (d x +c \right )}{b^{2}}+\frac {\left (a^{2} d^{2}-2 a c d b +c^{2} b^{2}\right ) \ln \left (\frac {1}{d x +c}\right )}{b^{3}}\right )\right ) g^{2}\right )}{d^{2}}}{d}\) \(495\)
parallelrisch \(\frac {12 B \,b^{3} c^{2} d f g +4 B \,a^{3} d^{3} g^{2}-4 B \,b^{3} c^{3} g^{2}-6 A a \,b^{2} c \,d^{2} f g +2 B \,a^{2} b c \,d^{2} g^{2}-2 B a \,b^{2} c^{2} d \,g^{2}-12 B \,a^{2} b \,d^{3} f g +2 A \,x^{3} b^{3} d^{3} g^{2}+12 B \ln \left (b x +a \right ) a \,b^{2} d^{3} f^{2}-12 B \ln \left (b x +a \right ) b^{3} c \,d^{2} f^{2}+2 B \,x^{3} \ln \left (\frac {e \left (b x +a \right )^{2}}{\left (d x +c \right )^{2}}\right ) b^{3} d^{3} g^{2}+6 B x \ln \left (\frac {e \left (b x +a \right )^{2}}{\left (d x +c \right )^{2}}\right ) b^{3} d^{3} f^{2}+6 B \ln \left (\frac {e \left (b x +a \right )^{2}}{\left (d x +c \right )^{2}}\right ) b^{3} c \,d^{2} f^{2}-12 B x \,b^{3} c \,d^{2} f g -12 B \ln \left (b x +a \right ) a^{2} b \,d^{3} f g +12 B \ln \left (b x +a \right ) b^{3} c^{2} d f g -4 B x \,a^{2} b \,d^{3} g^{2}+4 B x \,b^{3} c^{2} d \,g^{2}+2 B \,x^{2} a \,b^{2} d^{3} g^{2}-2 B \,x^{2} b^{3} c \,d^{2} g^{2}+6 A x \,b^{3} d^{3} f^{2}+6 B \,x^{2} \ln \left (\frac {e \left (b x +a \right )^{2}}{\left (d x +c \right )^{2}}\right ) b^{3} d^{3} f g -6 B \ln \left (\frac {e \left (b x +a \right )^{2}}{\left (d x +c \right )^{2}}\right ) b^{3} c^{2} d f g +12 B x a \,b^{2} d^{3} f g +2 B \ln \left (\frac {e \left (b x +a \right )^{2}}{\left (d x +c \right )^{2}}\right ) b^{3} c^{3} g^{2}+6 A \,x^{2} b^{3} d^{3} f g -6 A a \,b^{2} d^{3} f^{2}-6 A \,b^{3} c \,d^{2} f^{2}+4 B \ln \left (b x +a \right ) a^{3} d^{3} g^{2}-4 B \ln \left (b x +a \right ) b^{3} c^{3} g^{2}}{6 b^{3} d^{3}}\) \(544\)

Input:

int((g*x+f)^2*(A+B*ln(e*(b*x+a)^2/(d*x+c)^2)),x,method=_RETURNVERBOSE)
 

Output:

1/3*(g*x+f)^3*B/g*ln(e*(b*x+a)^2/(d*x+c)^2)+1/3*g^2*A*x^3+g*A*f*x^2+1/3/b* 
g^2*B*a*x^2-1/3/d*g^2*B*c*x^2+A*f^2*x-2/3/d^3*g^2*B*ln(d*x+c)*c^3+2/d^2*g* 
B*ln(d*x+c)*c^2*f-2/d*B*ln(d*x+c)*c*f^2+2/3/g*B*ln(d*x+c)*f^3+2/3/b^3*g^2* 
B*ln(-b*x-a)*a^3-2/b^2*g*B*ln(-b*x-a)*a^2*f+2/b*B*ln(-b*x-a)*a*f^2-2/3/g*B 
*ln(-b*x-a)*f^3-2/3/b^2*g^2*B*a^2*x+2/b*g*B*a*f*x+2/3/d^2*g^2*B*c^2*x-2/d* 
g*B*c*f*x
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 301 vs. \(2 (142) = 284\).

Time = 0.11 (sec) , antiderivative size = 301, normalized size of antiderivative = 1.98 \[ \int (f+g x)^2 \left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right ) \, dx=\frac {A b^{3} d^{3} g^{2} x^{3} + {\left (3 \, A b^{3} d^{3} f g - {\left (B b^{3} c d^{2} - B a b^{2} d^{3}\right )} g^{2}\right )} x^{2} + {\left (3 \, A b^{3} d^{3} f^{2} - 6 \, {\left (B b^{3} c d^{2} - B a b^{2} d^{3}\right )} f g + 2 \, {\left (B b^{3} c^{2} d - B a^{2} b d^{3}\right )} g^{2}\right )} x + 2 \, {\left (3 \, B a b^{2} d^{3} f^{2} - 3 \, B a^{2} b d^{3} f g + B a^{3} d^{3} g^{2}\right )} \log \left (b x + a\right ) - 2 \, {\left (3 \, B b^{3} c d^{2} f^{2} - 3 \, B b^{3} c^{2} d f g + B b^{3} c^{3} g^{2}\right )} \log \left (d x + c\right ) + {\left (B b^{3} d^{3} g^{2} x^{3} + 3 \, B b^{3} d^{3} f g x^{2} + 3 \, B b^{3} d^{3} f^{2} x\right )} \log \left (\frac {b^{2} e x^{2} + 2 \, a b e x + a^{2} e}{d^{2} x^{2} + 2 \, c d x + c^{2}}\right )}{3 \, b^{3} d^{3}} \] Input:

integrate((g*x+f)^2*(A+B*log(e*(b*x+a)^2/(d*x+c)^2)),x, algorithm="fricas" 
)
 

Output:

1/3*(A*b^3*d^3*g^2*x^3 + (3*A*b^3*d^3*f*g - (B*b^3*c*d^2 - B*a*b^2*d^3)*g^ 
2)*x^2 + (3*A*b^3*d^3*f^2 - 6*(B*b^3*c*d^2 - B*a*b^2*d^3)*f*g + 2*(B*b^3*c 
^2*d - B*a^2*b*d^3)*g^2)*x + 2*(3*B*a*b^2*d^3*f^2 - 3*B*a^2*b*d^3*f*g + B* 
a^3*d^3*g^2)*log(b*x + a) - 2*(3*B*b^3*c*d^2*f^2 - 3*B*b^3*c^2*d*f*g + B*b 
^3*c^3*g^2)*log(d*x + c) + (B*b^3*d^3*g^2*x^3 + 3*B*b^3*d^3*f*g*x^2 + 3*B* 
b^3*d^3*f^2*x)*log((b^2*e*x^2 + 2*a*b*e*x + a^2*e)/(d^2*x^2 + 2*c*d*x + c^ 
2)))/(b^3*d^3)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 692 vs. \(2 (139) = 278\).

Time = 3.19 (sec) , antiderivative size = 692, normalized size of antiderivative = 4.55 \[ \int (f+g x)^2 \left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right ) \, dx=\frac {A g^{2} x^{3}}{3} + \frac {2 B a \left (a^{2} g^{2} - 3 a b f g + 3 b^{2} f^{2}\right ) \log {\left (x + \frac {2 B a^{3} c d^{2} g^{2} - 6 B a^{2} b c d^{2} f g + \frac {2 B a^{2} d^{3} \left (a^{2} g^{2} - 3 a b f g + 3 b^{2} f^{2}\right )}{b} + 2 B a b^{2} c^{3} g^{2} - 6 B a b^{2} c^{2} d f g + 12 B a b^{2} c d^{2} f^{2} - 2 B a c d^{2} \left (a^{2} g^{2} - 3 a b f g + 3 b^{2} f^{2}\right )}{2 B a^{3} d^{3} g^{2} - 6 B a^{2} b d^{3} f g + 6 B a b^{2} d^{3} f^{2} + 2 B b^{3} c^{3} g^{2} - 6 B b^{3} c^{2} d f g + 6 B b^{3} c d^{2} f^{2}} \right )}}{3 b^{3}} - \frac {2 B c \left (c^{2} g^{2} - 3 c d f g + 3 d^{2} f^{2}\right ) \log {\left (x + \frac {2 B a^{3} c d^{2} g^{2} - 6 B a^{2} b c d^{2} f g + 2 B a b^{2} c^{3} g^{2} - 6 B a b^{2} c^{2} d f g + 12 B a b^{2} c d^{2} f^{2} - 2 B a b^{2} c \left (c^{2} g^{2} - 3 c d f g + 3 d^{2} f^{2}\right ) + \frac {2 B b^{3} c^{2} \left (c^{2} g^{2} - 3 c d f g + 3 d^{2} f^{2}\right )}{d}}{2 B a^{3} d^{3} g^{2} - 6 B a^{2} b d^{3} f g + 6 B a b^{2} d^{3} f^{2} + 2 B b^{3} c^{3} g^{2} - 6 B b^{3} c^{2} d f g + 6 B b^{3} c d^{2} f^{2}} \right )}}{3 d^{3}} + x^{2} \left (A f g + \frac {B a g^{2}}{3 b} - \frac {B c g^{2}}{3 d}\right ) + x \left (A f^{2} - \frac {2 B a^{2} g^{2}}{3 b^{2}} + \frac {2 B a f g}{b} + \frac {2 B c^{2} g^{2}}{3 d^{2}} - \frac {2 B c f g}{d}\right ) + \left (B f^{2} x + B f g x^{2} + \frac {B g^{2} x^{3}}{3}\right ) \log {\left (\frac {e \left (a + b x\right )^{2}}{\left (c + d x\right )^{2}} \right )} \] Input:

integrate((g*x+f)**2*(A+B*ln(e*(b*x+a)**2/(d*x+c)**2)),x)
 

Output:

A*g**2*x**3/3 + 2*B*a*(a**2*g**2 - 3*a*b*f*g + 3*b**2*f**2)*log(x + (2*B*a 
**3*c*d**2*g**2 - 6*B*a**2*b*c*d**2*f*g + 2*B*a**2*d**3*(a**2*g**2 - 3*a*b 
*f*g + 3*b**2*f**2)/b + 2*B*a*b**2*c**3*g**2 - 6*B*a*b**2*c**2*d*f*g + 12* 
B*a*b**2*c*d**2*f**2 - 2*B*a*c*d**2*(a**2*g**2 - 3*a*b*f*g + 3*b**2*f**2)) 
/(2*B*a**3*d**3*g**2 - 6*B*a**2*b*d**3*f*g + 6*B*a*b**2*d**3*f**2 + 2*B*b* 
*3*c**3*g**2 - 6*B*b**3*c**2*d*f*g + 6*B*b**3*c*d**2*f**2))/(3*b**3) - 2*B 
*c*(c**2*g**2 - 3*c*d*f*g + 3*d**2*f**2)*log(x + (2*B*a**3*c*d**2*g**2 - 6 
*B*a**2*b*c*d**2*f*g + 2*B*a*b**2*c**3*g**2 - 6*B*a*b**2*c**2*d*f*g + 12*B 
*a*b**2*c*d**2*f**2 - 2*B*a*b**2*c*(c**2*g**2 - 3*c*d*f*g + 3*d**2*f**2) + 
 2*B*b**3*c**2*(c**2*g**2 - 3*c*d*f*g + 3*d**2*f**2)/d)/(2*B*a**3*d**3*g** 
2 - 6*B*a**2*b*d**3*f*g + 6*B*a*b**2*d**3*f**2 + 2*B*b**3*c**3*g**2 - 6*B* 
b**3*c**2*d*f*g + 6*B*b**3*c*d**2*f**2))/(3*d**3) + x**2*(A*f*g + B*a*g**2 
/(3*b) - B*c*g**2/(3*d)) + x*(A*f**2 - 2*B*a**2*g**2/(3*b**2) + 2*B*a*f*g/ 
b + 2*B*c**2*g**2/(3*d**2) - 2*B*c*f*g/d) + (B*f**2*x + B*f*g*x**2 + B*g** 
2*x**3/3)*log(e*(a + b*x)**2/(c + d*x)**2)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 419 vs. \(2 (142) = 284\).

Time = 0.06 (sec) , antiderivative size = 419, normalized size of antiderivative = 2.76 \[ \int (f+g x)^2 \left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right ) \, dx=\frac {1}{3} \, A g^{2} x^{3} + A f g x^{2} + {\left (x \log \left (\frac {b^{2} e x^{2}}{d^{2} x^{2} + 2 \, c d x + c^{2}} + \frac {2 \, a b e x}{d^{2} x^{2} + 2 \, c d x + c^{2}} + \frac {a^{2} e}{d^{2} x^{2} + 2 \, c d x + c^{2}}\right ) + \frac {2 \, a \log \left (b x + a\right )}{b} - \frac {2 \, c \log \left (d x + c\right )}{d}\right )} B f^{2} + {\left (x^{2} \log \left (\frac {b^{2} e x^{2}}{d^{2} x^{2} + 2 \, c d x + c^{2}} + \frac {2 \, a b e x}{d^{2} x^{2} + 2 \, c d x + c^{2}} + \frac {a^{2} e}{d^{2} x^{2} + 2 \, c d x + c^{2}}\right ) - \frac {2 \, a^{2} \log \left (b x + a\right )}{b^{2}} + \frac {2 \, c^{2} \log \left (d x + c\right )}{d^{2}} - \frac {2 \, {\left (b c - a d\right )} x}{b d}\right )} B f g + \frac {1}{3} \, {\left (x^{3} \log \left (\frac {b^{2} e x^{2}}{d^{2} x^{2} + 2 \, c d x + c^{2}} + \frac {2 \, a b e x}{d^{2} x^{2} + 2 \, c d x + c^{2}} + \frac {a^{2} e}{d^{2} x^{2} + 2 \, c d x + c^{2}}\right ) + \frac {2 \, a^{3} \log \left (b x + a\right )}{b^{3}} - \frac {2 \, c^{3} \log \left (d x + c\right )}{d^{3}} - \frac {{\left (b^{2} c d - a b d^{2}\right )} x^{2} - 2 \, {\left (b^{2} c^{2} - a^{2} d^{2}\right )} x}{b^{2} d^{2}}\right )} B g^{2} + A f^{2} x \] Input:

integrate((g*x+f)^2*(A+B*log(e*(b*x+a)^2/(d*x+c)^2)),x, algorithm="maxima" 
)
 

Output:

1/3*A*g^2*x^3 + A*f*g*x^2 + (x*log(b^2*e*x^2/(d^2*x^2 + 2*c*d*x + c^2) + 2 
*a*b*e*x/(d^2*x^2 + 2*c*d*x + c^2) + a^2*e/(d^2*x^2 + 2*c*d*x + c^2)) + 2* 
a*log(b*x + a)/b - 2*c*log(d*x + c)/d)*B*f^2 + (x^2*log(b^2*e*x^2/(d^2*x^2 
 + 2*c*d*x + c^2) + 2*a*b*e*x/(d^2*x^2 + 2*c*d*x + c^2) + a^2*e/(d^2*x^2 + 
 2*c*d*x + c^2)) - 2*a^2*log(b*x + a)/b^2 + 2*c^2*log(d*x + c)/d^2 - 2*(b* 
c - a*d)*x/(b*d))*B*f*g + 1/3*(x^3*log(b^2*e*x^2/(d^2*x^2 + 2*c*d*x + c^2) 
 + 2*a*b*e*x/(d^2*x^2 + 2*c*d*x + c^2) + a^2*e/(d^2*x^2 + 2*c*d*x + c^2)) 
+ 2*a^3*log(b*x + a)/b^3 - 2*c^3*log(d*x + c)/d^3 - ((b^2*c*d - a*b*d^2)*x 
^2 - 2*(b^2*c^2 - a^2*d^2)*x)/(b^2*d^2))*B*g^2 + A*f^2*x
 

Giac [A] (verification not implemented)

Time = 3.65 (sec) , antiderivative size = 257, normalized size of antiderivative = 1.69 \[ \int (f+g x)^2 \left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right ) \, dx=\frac {1}{3} \, A g^{2} x^{3} + \frac {1}{3} \, {\left (B g^{2} x^{3} + 3 \, B f g x^{2} + 3 \, B f^{2} x\right )} \log \left (\frac {b^{2} e x^{2} + 2 \, a b e x + a^{2} e}{d^{2} x^{2} + 2 \, c d x + c^{2}}\right ) + \frac {{\left (3 \, A b d f g - B b c g^{2} + B a d g^{2}\right )} x^{2}}{3 \, b d} + \frac {2 \, {\left (3 \, B a b^{2} f^{2} - 3 \, B a^{2} b f g + B a^{3} g^{2}\right )} \log \left (b x + a\right )}{3 \, b^{3}} - \frac {2 \, {\left (3 \, B c d^{2} f^{2} - 3 \, B c^{2} d f g + B c^{3} g^{2}\right )} \log \left (-d x - c\right )}{3 \, d^{3}} + \frac {{\left (3 \, A b^{2} d^{2} f^{2} - 6 \, B b^{2} c d f g + 6 \, B a b d^{2} f g + 2 \, B b^{2} c^{2} g^{2} - 2 \, B a^{2} d^{2} g^{2}\right )} x}{3 \, b^{2} d^{2}} \] Input:

integrate((g*x+f)^2*(A+B*log(e*(b*x+a)^2/(d*x+c)^2)),x, algorithm="giac")
 

Output:

1/3*A*g^2*x^3 + 1/3*(B*g^2*x^3 + 3*B*f*g*x^2 + 3*B*f^2*x)*log((b^2*e*x^2 + 
 2*a*b*e*x + a^2*e)/(d^2*x^2 + 2*c*d*x + c^2)) + 1/3*(3*A*b*d*f*g - B*b*c* 
g^2 + B*a*d*g^2)*x^2/(b*d) + 2/3*(3*B*a*b^2*f^2 - 3*B*a^2*b*f*g + B*a^3*g^ 
2)*log(b*x + a)/b^3 - 2/3*(3*B*c*d^2*f^2 - 3*B*c^2*d*f*g + B*c^3*g^2)*log( 
-d*x - c)/d^3 + 1/3*(3*A*b^2*d^2*f^2 - 6*B*b^2*c*d*f*g + 6*B*a*b*d^2*f*g + 
 2*B*b^2*c^2*g^2 - 2*B*a^2*d^2*g^2)*x/(b^2*d^2)
 

Mupad [B] (verification not implemented)

Time = 25.94 (sec) , antiderivative size = 362, normalized size of antiderivative = 2.38 \[ \int (f+g x)^2 \left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right ) \, dx=\ln \left (\frac {e\,{\left (a+b\,x\right )}^2}{{\left (c+d\,x\right )}^2}\right )\,\left (B\,f^2\,x+B\,f\,g\,x^2+\frac {B\,g^2\,x^3}{3}\right )+x^2\,\left (\frac {3\,A\,a\,d\,g^2+3\,A\,b\,c\,g^2+2\,B\,a\,d\,g^2-2\,B\,b\,c\,g^2+6\,A\,b\,d\,f\,g}{6\,b\,d}-\frac {A\,g^2\,\left (3\,a\,d+3\,b\,c\right )}{6\,b\,d}\right )-x\,\left (\frac {\left (\frac {3\,A\,a\,d\,g^2+3\,A\,b\,c\,g^2+2\,B\,a\,d\,g^2-2\,B\,b\,c\,g^2+6\,A\,b\,d\,f\,g}{3\,b\,d}-\frac {A\,g^2\,\left (3\,a\,d+3\,b\,c\right )}{3\,b\,d}\right )\,\left (3\,a\,d+3\,b\,c\right )}{3\,b\,d}-\frac {3\,A\,a\,c\,g^2+3\,A\,b\,d\,f^2+6\,A\,a\,d\,f\,g+6\,A\,b\,c\,f\,g+6\,B\,a\,d\,f\,g-6\,B\,b\,c\,f\,g}{3\,b\,d}+\frac {A\,a\,c\,g^2}{b\,d}\right )+\frac {\ln \left (a+b\,x\right )\,\left (2\,B\,a^3\,g^2-6\,B\,a^2\,b\,f\,g+6\,B\,a\,b^2\,f^2\right )}{3\,b^3}-\frac {\ln \left (c+d\,x\right )\,\left (2\,B\,c^3\,g^2-6\,B\,c^2\,d\,f\,g+6\,B\,c\,d^2\,f^2\right )}{3\,d^3}+\frac {A\,g^2\,x^3}{3} \] Input:

int((f + g*x)^2*(A + B*log((e*(a + b*x)^2)/(c + d*x)^2)),x)
 

Output:

log((e*(a + b*x)^2)/(c + d*x)^2)*((B*g^2*x^3)/3 + B*f^2*x + B*f*g*x^2) + x 
^2*((3*A*a*d*g^2 + 3*A*b*c*g^2 + 2*B*a*d*g^2 - 2*B*b*c*g^2 + 6*A*b*d*f*g)/ 
(6*b*d) - (A*g^2*(3*a*d + 3*b*c))/(6*b*d)) - x*((((3*A*a*d*g^2 + 3*A*b*c*g 
^2 + 2*B*a*d*g^2 - 2*B*b*c*g^2 + 6*A*b*d*f*g)/(3*b*d) - (A*g^2*(3*a*d + 3* 
b*c))/(3*b*d))*(3*a*d + 3*b*c))/(3*b*d) - (3*A*a*c*g^2 + 3*A*b*d*f^2 + 6*A 
*a*d*f*g + 6*A*b*c*f*g + 6*B*a*d*f*g - 6*B*b*c*f*g)/(3*b*d) + (A*a*c*g^2)/ 
(b*d)) + (log(a + b*x)*(2*B*a^3*g^2 + 6*B*a*b^2*f^2 - 6*B*a^2*b*f*g))/(3*b 
^3) - (log(c + d*x)*(2*B*c^3*g^2 + 6*B*c*d^2*f^2 - 6*B*c^2*d*f*g))/(3*d^3) 
 + (A*g^2*x^3)/3
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 544, normalized size of antiderivative = 3.58 \[ \int (f+g x)^2 \left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right ) \, dx=\frac {2 \,\mathrm {log}\left (d x +c \right ) a^{3} d^{3} g^{2}-6 \,\mathrm {log}\left (d x +c \right ) a^{2} b \,d^{3} f g +6 \,\mathrm {log}\left (d x +c \right ) a \,b^{2} d^{3} f^{2}-2 \,\mathrm {log}\left (d x +c \right ) b^{3} c^{3} g^{2}+6 \,\mathrm {log}\left (d x +c \right ) b^{3} c^{2} d f g -6 \,\mathrm {log}\left (d x +c \right ) b^{3} c \,d^{2} f^{2}+\mathrm {log}\left (\frac {b^{2} e \,x^{2}+2 a b e x +a^{2} e}{d^{2} x^{2}+2 c d x +c^{2}}\right ) a^{3} d^{3} g^{2}-3 \,\mathrm {log}\left (\frac {b^{2} e \,x^{2}+2 a b e x +a^{2} e}{d^{2} x^{2}+2 c d x +c^{2}}\right ) a^{2} b \,d^{3} f g +3 \,\mathrm {log}\left (\frac {b^{2} e \,x^{2}+2 a b e x +a^{2} e}{d^{2} x^{2}+2 c d x +c^{2}}\right ) a \,b^{2} d^{3} f^{2}+3 \,\mathrm {log}\left (\frac {b^{2} e \,x^{2}+2 a b e x +a^{2} e}{d^{2} x^{2}+2 c d x +c^{2}}\right ) b^{3} d^{3} f^{2} x +3 \,\mathrm {log}\left (\frac {b^{2} e \,x^{2}+2 a b e x +a^{2} e}{d^{2} x^{2}+2 c d x +c^{2}}\right ) b^{3} d^{3} f g \,x^{2}+\mathrm {log}\left (\frac {b^{2} e \,x^{2}+2 a b e x +a^{2} e}{d^{2} x^{2}+2 c d x +c^{2}}\right ) b^{3} d^{3} g^{2} x^{3}-2 a^{2} b \,d^{3} g^{2} x +3 a \,b^{2} d^{3} f^{2} x +3 a \,b^{2} d^{3} f g \,x^{2}+6 a \,b^{2} d^{3} f g x +a \,b^{2} d^{3} g^{2} x^{3}+a \,b^{2} d^{3} g^{2} x^{2}+2 b^{3} c^{2} d \,g^{2} x -6 b^{3} c \,d^{2} f g x -b^{3} c \,d^{2} g^{2} x^{2}}{3 b^{2} d^{3}} \] Input:

int((g*x+f)^2*(A+B*log(e*(b*x+a)^2/(d*x+c)^2)),x)
 

Output:

(2*log(c + d*x)*a**3*d**3*g**2 - 6*log(c + d*x)*a**2*b*d**3*f*g + 6*log(c 
+ d*x)*a*b**2*d**3*f**2 - 2*log(c + d*x)*b**3*c**3*g**2 + 6*log(c + d*x)*b 
**3*c**2*d*f*g - 6*log(c + d*x)*b**3*c*d**2*f**2 + log((a**2*e + 2*a*b*e*x 
 + b**2*e*x**2)/(c**2 + 2*c*d*x + d**2*x**2))*a**3*d**3*g**2 - 3*log((a**2 
*e + 2*a*b*e*x + b**2*e*x**2)/(c**2 + 2*c*d*x + d**2*x**2))*a**2*b*d**3*f* 
g + 3*log((a**2*e + 2*a*b*e*x + b**2*e*x**2)/(c**2 + 2*c*d*x + d**2*x**2)) 
*a*b**2*d**3*f**2 + 3*log((a**2*e + 2*a*b*e*x + b**2*e*x**2)/(c**2 + 2*c*d 
*x + d**2*x**2))*b**3*d**3*f**2*x + 3*log((a**2*e + 2*a*b*e*x + b**2*e*x** 
2)/(c**2 + 2*c*d*x + d**2*x**2))*b**3*d**3*f*g*x**2 + log((a**2*e + 2*a*b* 
e*x + b**2*e*x**2)/(c**2 + 2*c*d*x + d**2*x**2))*b**3*d**3*g**2*x**3 - 2*a 
**2*b*d**3*g**2*x + 3*a*b**2*d**3*f**2*x + 3*a*b**2*d**3*f*g*x**2 + 6*a*b* 
*2*d**3*f*g*x + a*b**2*d**3*g**2*x**3 + a*b**2*d**3*g**2*x**2 + 2*b**3*c** 
2*d*g**2*x - 6*b**3*c*d**2*f*g*x - b**3*c*d**2*g**2*x**2)/(3*b**2*d**3)