\(\int \frac {A+B \log (\frac {e (a+b x)}{c+d x})}{(a g+b g x)^2 (c i+d i x)} \, dx\) [36]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [B] (verification not implemented)
Giac [F]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 40, antiderivative size = 173 \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(a g+b g x)^2 (c i+d i x)} \, dx=-\frac {b B (c+d x)}{(b c-a d)^2 g^2 i (a+b x)}+\frac {B d \log ^2\left (\frac {a+b x}{c+d x}\right )}{2 (b c-a d)^2 g^2 i}-\frac {b (c+d x) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{(b c-a d)^2 g^2 i (a+b x)}-\frac {d \log \left (\frac {a+b x}{c+d x}\right ) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{(b c-a d)^2 g^2 i} \] Output:

-b*B*(d*x+c)/(-a*d+b*c)^2/g^2/i/(b*x+a)+1/2*B*d*ln((b*x+a)/(d*x+c))^2/(-a* 
d+b*c)^2/g^2/i-b*(d*x+c)*(A+B*ln(e*(b*x+a)/(d*x+c)))/(-a*d+b*c)^2/g^2/i/(b 
*x+a)-d*ln((b*x+a)/(d*x+c))*(A+B*ln(e*(b*x+a)/(d*x+c)))/(-a*d+b*c)^2/g^2/i
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 0.34 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.69 \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(a g+b g x)^2 (c i+d i x)} \, dx=-\frac {2 (b c-a d) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )+2 d (a+b x) \log (a+b x) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )-2 d (a+b x) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right ) \log (c+d x)+2 B (b c-a d+d (a+b x) \log (a+b x)-d (a+b x) \log (c+d x))-B d (a+b x) \left (\log (a+b x) \left (\log (a+b x)-2 \log \left (\frac {b (c+d x)}{b c-a d}\right )\right )-2 \operatorname {PolyLog}\left (2,\frac {d (a+b x)}{-b c+a d}\right )\right )+B d (a+b x) \left (\left (2 \log \left (\frac {d (a+b x)}{-b c+a d}\right )-\log (c+d x)\right ) \log (c+d x)+2 \operatorname {PolyLog}\left (2,\frac {b (c+d x)}{b c-a d}\right )\right )}{2 (b c-a d)^2 g^2 i (a+b x)} \] Input:

Integrate[(A + B*Log[(e*(a + b*x))/(c + d*x)])/((a*g + b*g*x)^2*(c*i + d*i 
*x)),x]
 

Output:

-1/2*(2*(b*c - a*d)*(A + B*Log[(e*(a + b*x))/(c + d*x)]) + 2*d*(a + b*x)*L 
og[a + b*x]*(A + B*Log[(e*(a + b*x))/(c + d*x)]) - 2*d*(a + b*x)*(A + B*Lo 
g[(e*(a + b*x))/(c + d*x)])*Log[c + d*x] + 2*B*(b*c - a*d + d*(a + b*x)*Lo 
g[a + b*x] - d*(a + b*x)*Log[c + d*x]) - B*d*(a + b*x)*(Log[a + b*x]*(Log[ 
a + b*x] - 2*Log[(b*(c + d*x))/(b*c - a*d)]) - 2*PolyLog[2, (d*(a + b*x))/ 
(-(b*c) + a*d)]) + B*d*(a + b*x)*((2*Log[(d*(a + b*x))/(-(b*c) + a*d)] - L 
og[c + d*x])*Log[c + d*x] + 2*PolyLog[2, (b*(c + d*x))/(b*c - a*d)]))/((b* 
c - a*d)^2*g^2*i*(a + b*x))
 

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.73, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {2962, 2772, 25, 2010, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {B \log \left (\frac {e (a+b x)}{c+d x}\right )+A}{(a g+b g x)^2 (c i+d i x)} \, dx\)

\(\Big \downarrow \) 2962

\(\displaystyle \frac {\int \frac {(c+d x)^2 \left (b-\frac {d (a+b x)}{c+d x}\right ) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{(a+b x)^2}d\frac {a+b x}{c+d x}}{g^2 i (b c-a d)^2}\)

\(\Big \downarrow \) 2772

\(\displaystyle \frac {-B \int -\frac {(c+d x)^2 \left (b+\frac {d (a+b x) \log \left (\frac {a+b x}{c+d x}\right )}{c+d x}\right )}{(a+b x)^2}d\frac {a+b x}{c+d x}-\frac {b (c+d x) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )}{a+b x}-d \log \left (\frac {a+b x}{c+d x}\right ) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )}{g^2 i (b c-a d)^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {B \int \frac {(c+d x)^2 \left (b+\frac {d (a+b x) \log \left (\frac {a+b x}{c+d x}\right )}{c+d x}\right )}{(a+b x)^2}d\frac {a+b x}{c+d x}-\frac {b (c+d x) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )}{a+b x}-d \log \left (\frac {a+b x}{c+d x}\right ) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )}{g^2 i (b c-a d)^2}\)

\(\Big \downarrow \) 2010

\(\displaystyle \frac {B \int \left (\frac {b (c+d x)^2}{(a+b x)^2}+\frac {d \log \left (\frac {a+b x}{c+d x}\right ) (c+d x)}{a+b x}\right )d\frac {a+b x}{c+d x}-\frac {b (c+d x) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )}{a+b x}-d \log \left (\frac {a+b x}{c+d x}\right ) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )}{g^2 i (b c-a d)^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {b (c+d x) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )}{a+b x}-d \log \left (\frac {a+b x}{c+d x}\right ) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )+B \left (\frac {1}{2} d \log ^2\left (\frac {a+b x}{c+d x}\right )-\frac {b (c+d x)}{a+b x}\right )}{g^2 i (b c-a d)^2}\)

Input:

Int[(A + B*Log[(e*(a + b*x))/(c + d*x)])/((a*g + b*g*x)^2*(c*i + d*i*x)),x 
]
 

Output:

(B*(-((b*(c + d*x))/(a + b*x)) + (d*Log[(a + b*x)/(c + d*x)]^2)/2) - (b*(c 
 + d*x)*(A + B*Log[(e*(a + b*x))/(c + d*x)]))/(a + b*x) - d*Log[(a + b*x)/ 
(c + d*x)]*(A + B*Log[(e*(a + b*x))/(c + d*x)]))/((b*c - a*d)^2*g^2*i)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2010
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x] 
, x] /; FreeQ[{c, m}, x] && SumQ[u] &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) 
+ (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
 

rule 2772
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_ 
.))^(q_.), x_Symbol] :> With[{u = IntHide[x^m*(d + e*x^r)^q, x]}, Simp[(a + 
 b*Log[c*x^n])   u, x] - Simp[b*n   Int[SimplifyIntegrand[u/x, x], x], x]] 
/; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] &&  !(EqQ[q 
, 1] && EqQ[m, -1])
 

rule 2962
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_ 
)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_))^(m_.)*((h_.) + (i_.)*(x_))^(q_.), x_Sy 
mbol] :> Simp[(b*c - a*d)^(m + q + 1)*(g/b)^m*(i/d)^q   Subst[Int[x^m*((A + 
 B*Log[e*x^n])^p/(b - d*x)^(m + q + 2)), x], x, (a + b*x)/(c + d*x)], x] /; 
 FreeQ[{a, b, c, d, e, f, g, h, i, A, B, n, p}, x] && EqQ[n + mn, 0] && IGt 
Q[n, 0] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] && EqQ[d*h - c*i, 0] && I 
ntegersQ[m, q]
 
Maple [A] (verified)

Time = 1.78 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.33

method result size
parts \(\frac {A \left (\frac {d \ln \left (d x +c \right )}{\left (d a -b c \right )^{2}}+\frac {1}{\left (b x +a \right ) \left (d a -b c \right )}-\frac {d \ln \left (b x +a \right )}{\left (d a -b c \right )^{2}}\right )}{g^{2} i}-\frac {B \left (\frac {d^{2} \ln \left (\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}\right )^{2}}{2 \left (d a -b c \right )^{2}}-\frac {d b e \left (-\frac {\ln \left (\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}\right )}{\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}}-\frac {1}{\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}}\right )}{\left (d a -b c \right )^{2}}\right )}{g^{2} i d}\) \(230\)
norman \(\frac {-\frac {\left (A d a +B b c \right ) \ln \left (\frac {e \left (b x +a \right )}{d x +c}\right )}{g i \left (a^{2} d^{2}-2 a c d b +c^{2} b^{2}\right )}-\frac {B a d \ln \left (\frac {e \left (b x +a \right )}{d x +c}\right )^{2}}{2 g i \left (a^{2} d^{2}-2 a c d b +c^{2} b^{2}\right )}-\frac {b \left (A d +B d \right ) x \ln \left (\frac {e \left (b x +a \right )}{d x +c}\right )}{g i \left (a^{2} d^{2}-2 a c d b +c^{2} b^{2}\right )}-\frac {\left (A +B \right ) b x}{g i a \left (d a -b c \right )}-\frac {b B d x \ln \left (\frac {e \left (b x +a \right )}{d x +c}\right )^{2}}{2 g i \left (a^{2} d^{2}-2 a c d b +c^{2} b^{2}\right )}}{g \left (b x +a \right )}\) \(252\)
parallelrisch \(-\frac {B \ln \left (\frac {e \left (b x +a \right )}{d x +c}\right )^{2} a^{4} c^{2} d -2 A x \,a^{2} b^{2} c^{3}+2 A \ln \left (\frac {e \left (b x +a \right )}{d x +c}\right ) a^{4} c^{2} d -2 B x \,a^{2} b^{2} c^{3}+2 B \ln \left (\frac {e \left (b x +a \right )}{d x +c}\right ) a^{3} b \,c^{3}+2 A x \,a^{3} b \,c^{2} d +2 B x \,a^{3} b \,c^{2} d +B x \ln \left (\frac {e \left (b x +a \right )}{d x +c}\right )^{2} a^{3} b \,c^{2} d +2 A x \ln \left (\frac {e \left (b x +a \right )}{d x +c}\right ) a^{3} b \,c^{2} d +2 B x \ln \left (\frac {e \left (b x +a \right )}{d x +c}\right ) a^{3} b \,c^{2} d}{2 i \,g^{2} \left (b x +a \right ) \left (a^{2} d^{2}-2 a c d b +c^{2} b^{2}\right ) a^{3} c^{2}}\) \(254\)
risch \(\frac {A d \ln \left (d x +c \right )}{g^{2} i \left (d a -b c \right )^{2}}+\frac {A}{g^{2} i \left (b x +a \right ) \left (d a -b c \right )}-\frac {A d \ln \left (b x +a \right )}{g^{2} i \left (d a -b c \right )^{2}}-\frac {B d \ln \left (\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}\right )^{2}}{2 g^{2} i \left (d a -b c \right )^{2}}-\frac {B b e \ln \left (\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}\right )}{g^{2} i \left (d a -b c \right )^{2} \left (\frac {b e}{d}+\frac {e a}{d x +c}-\frac {e b c}{d \left (d x +c \right )}\right )}-\frac {B b e}{g^{2} i \left (d a -b c \right )^{2} \left (\frac {b e}{d}+\frac {e a}{d x +c}-\frac {e b c}{d \left (d x +c \right )}\right )}\) \(266\)
derivativedivides \(-\frac {e \left (d a -b c \right ) \left (\frac {d^{2} A b}{i \left (d a -b c \right )^{3} g^{2} \left (\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}\right )}+\frac {d^{3} A \ln \left (\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}\right )}{e i \left (d a -b c \right )^{3} g^{2}}-\frac {d^{2} B b \left (-\frac {\ln \left (\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}\right )}{\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}}-\frac {1}{\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}}\right )}{i \left (d a -b c \right )^{3} g^{2}}+\frac {d^{3} B \ln \left (\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}\right )^{2}}{2 e i \left (d a -b c \right )^{3} g^{2}}\right )}{d^{2}}\) \(288\)
default \(-\frac {e \left (d a -b c \right ) \left (\frac {d^{2} A b}{i \left (d a -b c \right )^{3} g^{2} \left (\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}\right )}+\frac {d^{3} A \ln \left (\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}\right )}{e i \left (d a -b c \right )^{3} g^{2}}-\frac {d^{2} B b \left (-\frac {\ln \left (\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}\right )}{\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}}-\frac {1}{\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}}\right )}{i \left (d a -b c \right )^{3} g^{2}}+\frac {d^{3} B \ln \left (\frac {b e}{d}+\frac {\left (d a -b c \right ) e}{d \left (d x +c \right )}\right )^{2}}{2 e i \left (d a -b c \right )^{3} g^{2}}\right )}{d^{2}}\) \(288\)

Input:

int((A+B*ln(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g)^2/(d*i*x+c*i),x,method=_RETURN 
VERBOSE)
 

Output:

1/g^2*A/i*(d/(a*d-b*c)^2*ln(d*x+c)+1/(b*x+a)/(a*d-b*c)-d/(a*d-b*c)^2*ln(b* 
x+a))-B/g^2/i/d*(1/2*d^2/(a*d-b*c)^2*ln(b*e/d+(a*d-b*c)*e/d/(d*x+c))^2-d/( 
a*d-b*c)^2*b*e*(-1/(b*e/d+(a*d-b*c)*e/d/(d*x+c))*ln(b*e/d+(a*d-b*c)*e/d/(d 
*x+c))-1/(b*e/d+(a*d-b*c)*e/d/(d*x+c))))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 144, normalized size of antiderivative = 0.83 \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(a g+b g x)^2 (c i+d i x)} \, dx=-\frac {2 \, {\left (A + B\right )} b c - 2 \, {\left (A + B\right )} a d + {\left (B b d x + B a d\right )} \log \left (\frac {b e x + a e}{d x + c}\right )^{2} + 2 \, {\left ({\left (A + B\right )} b d x + B b c + A a d\right )} \log \left (\frac {b e x + a e}{d x + c}\right )}{2 \, {\left ({\left (b^{3} c^{2} - 2 \, a b^{2} c d + a^{2} b d^{2}\right )} g^{2} i x + {\left (a b^{2} c^{2} - 2 \, a^{2} b c d + a^{3} d^{2}\right )} g^{2} i\right )}} \] Input:

integrate((A+B*log(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g)^2/(d*i*x+c*i),x, algori 
thm="fricas")
 

Output:

-1/2*(2*(A + B)*b*c - 2*(A + B)*a*d + (B*b*d*x + B*a*d)*log((b*e*x + a*e)/ 
(d*x + c))^2 + 2*((A + B)*b*d*x + B*b*c + A*a*d)*log((b*e*x + a*e)/(d*x + 
c)))/((b^3*c^2 - 2*a*b^2*c*d + a^2*b*d^2)*g^2*i*x + (a*b^2*c^2 - 2*a^2*b*c 
*d + a^3*d^2)*g^2*i)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 386 vs. \(2 (144) = 288\).

Time = 0.61 (sec) , antiderivative size = 386, normalized size of antiderivative = 2.23 \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(a g+b g x)^2 (c i+d i x)} \, dx=- \frac {B d \log {\left (\frac {e \left (a + b x\right )}{c + d x} \right )}^{2}}{2 a^{2} d^{2} g^{2} i - 4 a b c d g^{2} i + 2 b^{2} c^{2} g^{2} i} + \frac {B \log {\left (\frac {e \left (a + b x\right )}{c + d x} \right )}}{a^{2} d g^{2} i - a b c g^{2} i + a b d g^{2} i x - b^{2} c g^{2} i x} + \left (A + B\right ) \left (\frac {d \log {\left (x + \frac {- \frac {a^{3} d^{4}}{\left (a d - b c\right )^{2}} + \frac {3 a^{2} b c d^{3}}{\left (a d - b c\right )^{2}} - \frac {3 a b^{2} c^{2} d^{2}}{\left (a d - b c\right )^{2}} + a d^{2} + \frac {b^{3} c^{3} d}{\left (a d - b c\right )^{2}} + b c d}{2 b d^{2}} \right )}}{g^{2} i \left (a d - b c\right )^{2}} - \frac {d \log {\left (x + \frac {\frac {a^{3} d^{4}}{\left (a d - b c\right )^{2}} - \frac {3 a^{2} b c d^{3}}{\left (a d - b c\right )^{2}} + \frac {3 a b^{2} c^{2} d^{2}}{\left (a d - b c\right )^{2}} + a d^{2} - \frac {b^{3} c^{3} d}{\left (a d - b c\right )^{2}} + b c d}{2 b d^{2}} \right )}}{g^{2} i \left (a d - b c\right )^{2}} + \frac {1}{a^{2} d g^{2} i - a b c g^{2} i + x \left (a b d g^{2} i - b^{2} c g^{2} i\right )}\right ) \] Input:

integrate((A+B*ln(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g)**2/(d*i*x+c*i),x)
 

Output:

-B*d*log(e*(a + b*x)/(c + d*x))**2/(2*a**2*d**2*g**2*i - 4*a*b*c*d*g**2*i 
+ 2*b**2*c**2*g**2*i) + B*log(e*(a + b*x)/(c + d*x))/(a**2*d*g**2*i - a*b* 
c*g**2*i + a*b*d*g**2*i*x - b**2*c*g**2*i*x) + (A + B)*(d*log(x + (-a**3*d 
**4/(a*d - b*c)**2 + 3*a**2*b*c*d**3/(a*d - b*c)**2 - 3*a*b**2*c**2*d**2/( 
a*d - b*c)**2 + a*d**2 + b**3*c**3*d/(a*d - b*c)**2 + b*c*d)/(2*b*d**2))/( 
g**2*i*(a*d - b*c)**2) - d*log(x + (a**3*d**4/(a*d - b*c)**2 - 3*a**2*b*c* 
d**3/(a*d - b*c)**2 + 3*a*b**2*c**2*d**2/(a*d - b*c)**2 + a*d**2 - b**3*c* 
*3*d/(a*d - b*c)**2 + b*c*d)/(2*b*d**2))/(g**2*i*(a*d - b*c)**2) + 1/(a**2 
*d*g**2*i - a*b*c*g**2*i + x*(a*b*d*g**2*i - b**2*c*g**2*i)))
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 424 vs. \(2 (171) = 342\).

Time = 0.06 (sec) , antiderivative size = 424, normalized size of antiderivative = 2.45 \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(a g+b g x)^2 (c i+d i x)} \, dx=-B {\left (\frac {1}{{\left (b^{2} c - a b d\right )} g^{2} i x + {\left (a b c - a^{2} d\right )} g^{2} i} + \frac {d \log \left (b x + a\right )}{{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} g^{2} i} - \frac {d \log \left (d x + c\right )}{{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} g^{2} i}\right )} \log \left (\frac {b e x}{d x + c} + \frac {a e}{d x + c}\right ) - A {\left (\frac {1}{{\left (b^{2} c - a b d\right )} g^{2} i x + {\left (a b c - a^{2} d\right )} g^{2} i} + \frac {d \log \left (b x + a\right )}{{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} g^{2} i} - \frac {d \log \left (d x + c\right )}{{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} g^{2} i}\right )} + \frac {{\left ({\left (b d x + a d\right )} \log \left (b x + a\right )^{2} + {\left (b d x + a d\right )} \log \left (d x + c\right )^{2} - 2 \, b c + 2 \, a d - 2 \, {\left (b d x + a d\right )} \log \left (b x + a\right ) + 2 \, {\left (b d x + a d - {\left (b d x + a d\right )} \log \left (b x + a\right )\right )} \log \left (d x + c\right )\right )} B}{2 \, {\left (a b^{2} c^{2} g^{2} i - 2 \, a^{2} b c d g^{2} i + a^{3} d^{2} g^{2} i + {\left (b^{3} c^{2} g^{2} i - 2 \, a b^{2} c d g^{2} i + a^{2} b d^{2} g^{2} i\right )} x\right )}} \] Input:

integrate((A+B*log(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g)^2/(d*i*x+c*i),x, algori 
thm="maxima")
 

Output:

-B*(1/((b^2*c - a*b*d)*g^2*i*x + (a*b*c - a^2*d)*g^2*i) + d*log(b*x + a)/( 
(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*g^2*i) - d*log(d*x + c)/((b^2*c^2 - 2*a*b* 
c*d + a^2*d^2)*g^2*i))*log(b*e*x/(d*x + c) + a*e/(d*x + c)) - A*(1/((b^2*c 
 - a*b*d)*g^2*i*x + (a*b*c - a^2*d)*g^2*i) + d*log(b*x + a)/((b^2*c^2 - 2* 
a*b*c*d + a^2*d^2)*g^2*i) - d*log(d*x + c)/((b^2*c^2 - 2*a*b*c*d + a^2*d^2 
)*g^2*i)) + 1/2*((b*d*x + a*d)*log(b*x + a)^2 + (b*d*x + a*d)*log(d*x + c) 
^2 - 2*b*c + 2*a*d - 2*(b*d*x + a*d)*log(b*x + a) + 2*(b*d*x + a*d - (b*d* 
x + a*d)*log(b*x + a))*log(d*x + c))*B/(a*b^2*c^2*g^2*i - 2*a^2*b*c*d*g^2* 
i + a^3*d^2*g^2*i + (b^3*c^2*g^2*i - 2*a*b^2*c*d*g^2*i + a^2*b*d^2*g^2*i)* 
x)
 

Giac [F]

\[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(a g+b g x)^2 (c i+d i x)} \, dx=\int { \frac {B \log \left (\frac {{\left (b x + a\right )} e}{d x + c}\right ) + A}{{\left (b g x + a g\right )}^{2} {\left (d i x + c i\right )}} \,d x } \] Input:

integrate((A+B*log(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g)^2/(d*i*x+c*i),x, algori 
thm="giac")
 

Output:

integrate((B*log((b*x + a)*e/(d*x + c)) + A)/((b*g*x + a*g)^2*(d*i*x + c*i 
)), x)
 

Mupad [B] (verification not implemented)

Time = 27.53 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.39 \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(a g+b g x)^2 (c i+d i x)} \, dx=\frac {A+B}{\left (a\,d-b\,c\right )\,\left (a\,g^2\,i+b\,g^2\,i\,x\right )}-\frac {B\,d\,{\ln \left (\frac {e\,\left (a+b\,x\right )}{c+d\,x}\right )}^2}{2\,g^2\,i\,\left (a^2\,d^2-2\,a\,b\,c\,d+b^2\,c^2\right )}+\frac {B\,\ln \left (\frac {e\,\left (a+b\,x\right )}{c+d\,x}\right )\,\left (a\,d-b\,c\right )}{b\,d\,g^2\,i\,\left (\frac {x}{d}+\frac {a}{b\,d}\right )\,\left (a^2\,d^2-2\,a\,b\,c\,d+b^2\,c^2\right )}+\frac {d\,\mathrm {atan}\left (\frac {\left (2\,b\,d\,x+\frac {a^2\,d^2\,g^2\,i-b^2\,c^2\,g^2\,i}{g^2\,i\,\left (a\,d-b\,c\right )}\right )\,1{}\mathrm {i}}{a\,d-b\,c}\right )\,\left (A+B\right )\,2{}\mathrm {i}}{g^2\,i\,{\left (a\,d-b\,c\right )}^2} \] Input:

int((A + B*log((e*(a + b*x))/(c + d*x)))/((a*g + b*g*x)^2*(c*i + d*i*x)),x 
)
 

Output:

(A + B)/((a*d - b*c)*(a*g^2*i + b*g^2*i*x)) + (d*atan(((2*b*d*x + (a^2*d^2 
*g^2*i - b^2*c^2*g^2*i)/(g^2*i*(a*d - b*c)))*1i)/(a*d - b*c))*(A + B)*2i)/ 
(g^2*i*(a*d - b*c)^2) - (B*d*log((e*(a + b*x))/(c + d*x))^2)/(2*g^2*i*(a^2 
*d^2 + b^2*c^2 - 2*a*b*c*d)) + (B*log((e*(a + b*x))/(c + d*x))*(a*d - b*c) 
)/(b*d*g^2*i*(x/d + a/(b*d))*(a^2*d^2 + b^2*c^2 - 2*a*b*c*d))
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 297, normalized size of antiderivative = 1.72 \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(a g+b g x)^2 (c i+d i x)} \, dx=\frac {i \left (2 \,\mathrm {log}\left (b x +a \right ) a^{3} d +2 \,\mathrm {log}\left (b x +a \right ) a^{2} b d x +2 \,\mathrm {log}\left (b x +a \right ) a \,b^{2} c +2 \,\mathrm {log}\left (b x +a \right ) b^{3} c x -2 \,\mathrm {log}\left (d x +c \right ) a^{3} d -2 \,\mathrm {log}\left (d x +c \right ) a^{2} b d x -2 \,\mathrm {log}\left (d x +c \right ) a \,b^{2} c -2 \,\mathrm {log}\left (d x +c \right ) b^{3} c x +\mathrm {log}\left (\frac {b e x +a e}{d x +c}\right )^{2} a^{2} b d +\mathrm {log}\left (\frac {b e x +a e}{d x +c}\right )^{2} a \,b^{2} d x +2 \,\mathrm {log}\left (\frac {b e x +a e}{d x +c}\right ) a \,b^{2} d x -2 \,\mathrm {log}\left (\frac {b e x +a e}{d x +c}\right ) b^{3} c x +2 a^{2} b d x -2 a \,b^{2} c x +2 a \,b^{2} d x -2 b^{3} c x \right )}{2 a \,g^{2} \left (a^{2} b \,d^{2} x -2 a \,b^{2} c d x +b^{3} c^{2} x +a^{3} d^{2}-2 a^{2} b c d +a \,b^{2} c^{2}\right )} \] Input:

int((A+B*log(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g)^2/(d*i*x+c*i),x)
 

Output:

(i*(2*log(a + b*x)*a**3*d + 2*log(a + b*x)*a**2*b*d*x + 2*log(a + b*x)*a*b 
**2*c + 2*log(a + b*x)*b**3*c*x - 2*log(c + d*x)*a**3*d - 2*log(c + d*x)*a 
**2*b*d*x - 2*log(c + d*x)*a*b**2*c - 2*log(c + d*x)*b**3*c*x + log((a*e + 
 b*e*x)/(c + d*x))**2*a**2*b*d + log((a*e + b*e*x)/(c + d*x))**2*a*b**2*d* 
x + 2*log((a*e + b*e*x)/(c + d*x))*a*b**2*d*x - 2*log((a*e + b*e*x)/(c + d 
*x))*b**3*c*x + 2*a**2*b*d*x - 2*a*b**2*c*x + 2*a*b**2*d*x - 2*b**3*c*x))/ 
(2*a*g**2*(a**3*d**2 - 2*a**2*b*c*d + a**2*b*d**2*x + a*b**2*c**2 - 2*a*b* 
*2*c*d*x + b**3*c**2*x))