\(\int (g+h x)^4 \log (e (f (a+b x)^p (c+d x)^q)^r) \, dx\) [25]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 334 \[ \int (g+h x)^4 \log \left (e \left (f (a+b x)^p (c+d x)^q\right )^r\right ) \, dx=-\frac {(b g-a h)^4 p r x}{5 b^4}-\frac {(d g-c h)^4 q r x}{5 d^4}-\frac {(b g-a h)^3 p r (g+h x)^2}{10 b^3 h}-\frac {(d g-c h)^3 q r (g+h x)^2}{10 d^3 h}-\frac {(b g-a h)^2 p r (g+h x)^3}{15 b^2 h}-\frac {(d g-c h)^2 q r (g+h x)^3}{15 d^2 h}-\frac {(b g-a h) p r (g+h x)^4}{20 b h}-\frac {(d g-c h) q r (g+h x)^4}{20 d h}-\frac {p r (g+h x)^5}{25 h}-\frac {q r (g+h x)^5}{25 h}-\frac {(b g-a h)^5 p r \log (a+b x)}{5 b^5 h}-\frac {(d g-c h)^5 q r \log (c+d x)}{5 d^5 h}+\frac {(g+h x)^5 \log \left (e \left (f (a+b x)^p (c+d x)^q\right )^r\right )}{5 h} \] Output:

-1/5*(-a*h+b*g)^4*p*r*x/b^4-1/5*(-c*h+d*g)^4*q*r*x/d^4-1/10*(-a*h+b*g)^3*p 
*r*(h*x+g)^2/b^3/h-1/10*(-c*h+d*g)^3*q*r*(h*x+g)^2/d^3/h-1/15*(-a*h+b*g)^2 
*p*r*(h*x+g)^3/b^2/h-1/15*(-c*h+d*g)^2*q*r*(h*x+g)^3/d^2/h-1/20*(-a*h+b*g) 
*p*r*(h*x+g)^4/b/h-1/20*(-c*h+d*g)*q*r*(h*x+g)^4/d/h-1/25*p*r*(h*x+g)^5/h- 
1/25*q*r*(h*x+g)^5/h-1/5*(-a*h+b*g)^5*p*r*ln(b*x+a)/b^5/h-1/5*(-c*h+d*g)^5 
*q*r*ln(d*x+c)/d^5/h+1/5*(h*x+g)^5*ln(e*(f*(b*x+a)^p*(d*x+c)^q)^r)/h
 

Mathematica [A] (verified)

Time = 0.36 (sec) , antiderivative size = 275, normalized size of antiderivative = 0.82 \[ \int (g+h x)^4 \log \left (e \left (f (a+b x)^p (c+d x)^q\right )^r\right ) \, dx=\frac {-\frac {p r \left (60 b h (b g-a h)^4 x+30 b^2 (b g-a h)^3 (g+h x)^2+20 b^3 (b g-a h)^2 (g+h x)^3+15 b^4 (b g-a h) (g+h x)^4+12 b^5 (g+h x)^5+60 (b g-a h)^5 \log (a+b x)\right )}{60 b^5}-\frac {q r \left (60 d h (d g-c h)^4 x+30 d^2 (d g-c h)^3 (g+h x)^2+20 d^3 (d g-c h)^2 (g+h x)^3+15 d^4 (d g-c h) (g+h x)^4+12 d^5 (g+h x)^5+60 (d g-c h)^5 \log (c+d x)\right )}{60 d^5}+(g+h x)^5 \log \left (e \left (f (a+b x)^p (c+d x)^q\right )^r\right )}{5 h} \] Input:

Integrate[(g + h*x)^4*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r],x]
 

Output:

(-1/60*(p*r*(60*b*h*(b*g - a*h)^4*x + 30*b^2*(b*g - a*h)^3*(g + h*x)^2 + 2 
0*b^3*(b*g - a*h)^2*(g + h*x)^3 + 15*b^4*(b*g - a*h)*(g + h*x)^4 + 12*b^5* 
(g + h*x)^5 + 60*(b*g - a*h)^5*Log[a + b*x]))/b^5 - (q*r*(60*d*h*(d*g - c* 
h)^4*x + 30*d^2*(d*g - c*h)^3*(g + h*x)^2 + 20*d^3*(d*g - c*h)^2*(g + h*x) 
^3 + 15*d^4*(d*g - c*h)*(g + h*x)^4 + 12*d^5*(g + h*x)^5 + 60*(d*g - c*h)^ 
5*Log[c + d*x]))/(60*d^5) + (g + h*x)^5*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^ 
r])/(5*h)
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 298, normalized size of antiderivative = 0.89, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {2981, 49, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (g+h x)^4 \log \left (e \left (f (a+b x)^p (c+d x)^q\right )^r\right ) \, dx\)

\(\Big \downarrow \) 2981

\(\displaystyle -\frac {b p r \int \frac {(g+h x)^5}{a+b x}dx}{5 h}-\frac {d q r \int \frac {(g+h x)^5}{c+d x}dx}{5 h}+\frac {(g+h x)^5 \log \left (e \left (f (a+b x)^p (c+d x)^q\right )^r\right )}{5 h}\)

\(\Big \downarrow \) 49

\(\displaystyle -\frac {b p r \int \left (\frac {(b g-a h)^5}{b^5 (a+b x)}+\frac {h (b g-a h)^4}{b^5}+\frac {h (g+h x) (b g-a h)^3}{b^4}+\frac {h (g+h x)^2 (b g-a h)^2}{b^3}+\frac {h (g+h x)^3 (b g-a h)}{b^2}+\frac {h (g+h x)^4}{b}\right )dx}{5 h}-\frac {d q r \int \left (\frac {(d g-c h)^5}{d^5 (c+d x)}+\frac {h (d g-c h)^4}{d^5}+\frac {h (g+h x) (d g-c h)^3}{d^4}+\frac {h (g+h x)^2 (d g-c h)^2}{d^3}+\frac {h (g+h x)^3 (d g-c h)}{d^2}+\frac {h (g+h x)^4}{d}\right )dx}{5 h}+\frac {(g+h x)^5 \log \left (e \left (f (a+b x)^p (c+d x)^q\right )^r\right )}{5 h}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {b p r \left (\frac {(b g-a h)^5 \log (a+b x)}{b^6}+\frac {h x (b g-a h)^4}{b^5}+\frac {(g+h x)^2 (b g-a h)^3}{2 b^4}+\frac {(g+h x)^3 (b g-a h)^2}{3 b^3}+\frac {(g+h x)^4 (b g-a h)}{4 b^2}+\frac {(g+h x)^5}{5 b}\right )}{5 h}+\frac {(g+h x)^5 \log \left (e \left (f (a+b x)^p (c+d x)^q\right )^r\right )}{5 h}-\frac {d q r \left (\frac {(d g-c h)^5 \log (c+d x)}{d^6}+\frac {h x (d g-c h)^4}{d^5}+\frac {(g+h x)^2 (d g-c h)^3}{2 d^4}+\frac {(g+h x)^3 (d g-c h)^2}{3 d^3}+\frac {(g+h x)^4 (d g-c h)}{4 d^2}+\frac {(g+h x)^5}{5 d}\right )}{5 h}\)

Input:

Int[(g + h*x)^4*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r],x]
 

Output:

-1/5*(b*p*r*((h*(b*g - a*h)^4*x)/b^5 + ((b*g - a*h)^3*(g + h*x)^2)/(2*b^4) 
 + ((b*g - a*h)^2*(g + h*x)^3)/(3*b^3) + ((b*g - a*h)*(g + h*x)^4)/(4*b^2) 
 + (g + h*x)^5/(5*b) + ((b*g - a*h)^5*Log[a + b*x])/b^6))/h - (d*q*r*((h*( 
d*g - c*h)^4*x)/d^5 + ((d*g - c*h)^3*(g + h*x)^2)/(2*d^4) + ((d*g - c*h)^2 
*(g + h*x)^3)/(3*d^3) + ((d*g - c*h)*(g + h*x)^4)/(4*d^2) + (g + h*x)^5/(5 
*d) + ((d*g - c*h)^5*Log[c + d*x])/d^6))/(5*h) + ((g + h*x)^5*Log[e*(f*(a 
+ b*x)^p*(c + d*x)^q)^r])/(5*h)
 

Defintions of rubi rules used

rule 49
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d}, x] 
&& IGtQ[m, 0] && IGtQ[m + n + 2, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2981
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.)) 
^(r_.)]*((g_.) + (h_.)*(x_))^(m_.), x_Symbol] :> Simp[(g + h*x)^(m + 1)*(Lo 
g[e*(f*(a + b*x)^p*(c + d*x)^q)^r]/(h*(m + 1))), x] + (-Simp[b*p*(r/(h*(m + 
 1)))   Int[(g + h*x)^(m + 1)/(a + b*x), x], x] - Simp[d*q*(r/(h*(m + 1))) 
  Int[(g + h*x)^(m + 1)/(c + d*x), x], x]) /; FreeQ[{a, b, c, d, e, f, g, h 
, m, p, q, r}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1]
 
Maple [F]

\[\int \left (h x +g \right )^{4} \ln \left (e \left (f \left (b x +a \right )^{p} \left (d x +c \right )^{q}\right )^{r}\right )d x\]

Input:

int((h*x+g)^4*ln(e*(f*(b*x+a)^p*(d*x+c)^q)^r),x)
 

Output:

int((h*x+g)^4*ln(e*(f*(b*x+a)^p*(d*x+c)^q)^r),x)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 945 vs. \(2 (308) = 616\).

Time = 0.09 (sec) , antiderivative size = 945, normalized size of antiderivative = 2.83 \[ \int (g+h x)^4 \log \left (e \left (f (a+b x)^p (c+d x)^q\right )^r\right ) \, dx =\text {Too large to display} \] Input:

integrate((h*x+g)^4*log(e*(f*(b*x+a)^p*(d*x+c)^q)^r),x, algorithm="fricas" 
)
 

Output:

-1/300*(12*(b^5*d^5*h^4*p + b^5*d^5*h^4*q)*r*x^5 + 15*((5*b^5*d^5*g*h^3 - 
a*b^4*d^5*h^4)*p + (5*b^5*d^5*g*h^3 - b^5*c*d^4*h^4)*q)*r*x^4 + 20*((10*b^ 
5*d^5*g^2*h^2 - 5*a*b^4*d^5*g*h^3 + a^2*b^3*d^5*h^4)*p + (10*b^5*d^5*g^2*h 
^2 - 5*b^5*c*d^4*g*h^3 + b^5*c^2*d^3*h^4)*q)*r*x^3 + 30*((10*b^5*d^5*g^3*h 
 - 10*a*b^4*d^5*g^2*h^2 + 5*a^2*b^3*d^5*g*h^3 - a^3*b^2*d^5*h^4)*p + (10*b 
^5*d^5*g^3*h - 10*b^5*c*d^4*g^2*h^2 + 5*b^5*c^2*d^3*g*h^3 - b^5*c^3*d^2*h^ 
4)*q)*r*x^2 + 60*((5*b^5*d^5*g^4 - 10*a*b^4*d^5*g^3*h + 10*a^2*b^3*d^5*g^2 
*h^2 - 5*a^3*b^2*d^5*g*h^3 + a^4*b*d^5*h^4)*p + (5*b^5*d^5*g^4 - 10*b^5*c* 
d^4*g^3*h + 10*b^5*c^2*d^3*g^2*h^2 - 5*b^5*c^3*d^2*g*h^3 + b^5*c^4*d*h^4)* 
q)*r*x - 60*(b^5*d^5*h^4*p*r*x^5 + 5*b^5*d^5*g*h^3*p*r*x^4 + 10*b^5*d^5*g^ 
2*h^2*p*r*x^3 + 10*b^5*d^5*g^3*h*p*r*x^2 + 5*b^5*d^5*g^4*p*r*x + (5*a*b^4* 
d^5*g^4 - 10*a^2*b^3*d^5*g^3*h + 10*a^3*b^2*d^5*g^2*h^2 - 5*a^4*b*d^5*g*h^ 
3 + a^5*d^5*h^4)*p*r)*log(b*x + a) - 60*(b^5*d^5*h^4*q*r*x^5 + 5*b^5*d^5*g 
*h^3*q*r*x^4 + 10*b^5*d^5*g^2*h^2*q*r*x^3 + 10*b^5*d^5*g^3*h*q*r*x^2 + 5*b 
^5*d^5*g^4*q*r*x + (5*b^5*c*d^4*g^4 - 10*b^5*c^2*d^3*g^3*h + 10*b^5*c^3*d^ 
2*g^2*h^2 - 5*b^5*c^4*d*g*h^3 + b^5*c^5*h^4)*q*r)*log(d*x + c) - 60*(b^5*d 
^5*h^4*x^5 + 5*b^5*d^5*g*h^3*x^4 + 10*b^5*d^5*g^2*h^2*x^3 + 10*b^5*d^5*g^3 
*h*x^2 + 5*b^5*d^5*g^4*x)*log(e) - 60*(b^5*d^5*h^4*r*x^5 + 5*b^5*d^5*g*h^3 
*r*x^4 + 10*b^5*d^5*g^2*h^2*r*x^3 + 10*b^5*d^5*g^3*h*r*x^2 + 5*b^5*d^5*g^4 
*r*x)*log(f))/(b^5*d^5)
 

Sympy [F(-1)]

Timed out. \[ \int (g+h x)^4 \log \left (e \left (f (a+b x)^p (c+d x)^q\right )^r\right ) \, dx=\text {Timed out} \] Input:

integrate((h*x+g)**4*ln(e*(f*(b*x+a)**p*(d*x+c)**q)**r),x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 624 vs. \(2 (308) = 616\).

Time = 0.05 (sec) , antiderivative size = 624, normalized size of antiderivative = 1.87 \[ \int (g+h x)^4 \log \left (e \left (f (a+b x)^p (c+d x)^q\right )^r\right ) \, dx=\frac {1}{5} \, {\left (h^{4} x^{5} + 5 \, g h^{3} x^{4} + 10 \, g^{2} h^{2} x^{3} + 10 \, g^{3} h x^{2} + 5 \, g^{4} x\right )} \log \left (\left ({\left (b x + a\right )}^{p} {\left (d x + c\right )}^{q} f\right )^{r} e\right ) + \frac {r {\left (\frac {60 \, {\left (5 \, a b^{4} f g^{4} p - 10 \, a^{2} b^{3} f g^{3} h p + 10 \, a^{3} b^{2} f g^{2} h^{2} p - 5 \, a^{4} b f g h^{3} p + a^{5} f h^{4} p\right )} \log \left (b x + a\right )}{b^{5}} + \frac {60 \, {\left (5 \, c d^{4} f g^{4} q - 10 \, c^{2} d^{3} f g^{3} h q + 10 \, c^{3} d^{2} f g^{2} h^{2} q - 5 \, c^{4} d f g h^{3} q + c^{5} f h^{4} q\right )} \log \left (d x + c\right )}{d^{5}} - \frac {12 \, b^{4} d^{4} f h^{4} {\left (p + q\right )} x^{5} - 15 \, {\left (a b^{3} d^{4} f h^{4} p - {\left (5 \, d^{4} f g h^{3} {\left (p + q\right )} - c d^{3} f h^{4} q\right )} b^{4}\right )} x^{4} - 20 \, {\left (5 \, a b^{3} d^{4} f g h^{3} p - a^{2} b^{2} d^{4} f h^{4} p - {\left (10 \, d^{4} f g^{2} h^{2} {\left (p + q\right )} - 5 \, c d^{3} f g h^{3} q + c^{2} d^{2} f h^{4} q\right )} b^{4}\right )} x^{3} - 30 \, {\left (10 \, a b^{3} d^{4} f g^{2} h^{2} p - 5 \, a^{2} b^{2} d^{4} f g h^{3} p + a^{3} b d^{4} f h^{4} p - {\left (10 \, d^{4} f g^{3} h {\left (p + q\right )} - 10 \, c d^{3} f g^{2} h^{2} q + 5 \, c^{2} d^{2} f g h^{3} q - c^{3} d f h^{4} q\right )} b^{4}\right )} x^{2} - 60 \, {\left (10 \, a b^{3} d^{4} f g^{3} h p - 10 \, a^{2} b^{2} d^{4} f g^{2} h^{2} p + 5 \, a^{3} b d^{4} f g h^{3} p - a^{4} d^{4} f h^{4} p - {\left (5 \, d^{4} f g^{4} {\left (p + q\right )} - 10 \, c d^{3} f g^{3} h q + 10 \, c^{2} d^{2} f g^{2} h^{2} q - 5 \, c^{3} d f g h^{3} q + c^{4} f h^{4} q\right )} b^{4}\right )} x}{b^{4} d^{4}}\right )}}{300 \, f} \] Input:

integrate((h*x+g)^4*log(e*(f*(b*x+a)^p*(d*x+c)^q)^r),x, algorithm="maxima" 
)
 

Output:

1/5*(h^4*x^5 + 5*g*h^3*x^4 + 10*g^2*h^2*x^3 + 10*g^3*h*x^2 + 5*g^4*x)*log( 
((b*x + a)^p*(d*x + c)^q*f)^r*e) + 1/300*r*(60*(5*a*b^4*f*g^4*p - 10*a^2*b 
^3*f*g^3*h*p + 10*a^3*b^2*f*g^2*h^2*p - 5*a^4*b*f*g*h^3*p + a^5*f*h^4*p)*l 
og(b*x + a)/b^5 + 60*(5*c*d^4*f*g^4*q - 10*c^2*d^3*f*g^3*h*q + 10*c^3*d^2* 
f*g^2*h^2*q - 5*c^4*d*f*g*h^3*q + c^5*f*h^4*q)*log(d*x + c)/d^5 - (12*b^4* 
d^4*f*h^4*(p + q)*x^5 - 15*(a*b^3*d^4*f*h^4*p - (5*d^4*f*g*h^3*(p + q) - c 
*d^3*f*h^4*q)*b^4)*x^4 - 20*(5*a*b^3*d^4*f*g*h^3*p - a^2*b^2*d^4*f*h^4*p - 
 (10*d^4*f*g^2*h^2*(p + q) - 5*c*d^3*f*g*h^3*q + c^2*d^2*f*h^4*q)*b^4)*x^3 
 - 30*(10*a*b^3*d^4*f*g^2*h^2*p - 5*a^2*b^2*d^4*f*g*h^3*p + a^3*b*d^4*f*h^ 
4*p - (10*d^4*f*g^3*h*(p + q) - 10*c*d^3*f*g^2*h^2*q + 5*c^2*d^2*f*g*h^3*q 
 - c^3*d*f*h^4*q)*b^4)*x^2 - 60*(10*a*b^3*d^4*f*g^3*h*p - 10*a^2*b^2*d^4*f 
*g^2*h^2*p + 5*a^3*b*d^4*f*g*h^3*p - a^4*d^4*f*h^4*p - (5*d^4*f*g^4*(p + q 
) - 10*c*d^3*f*g^3*h*q + 10*c^2*d^2*f*g^2*h^2*q - 5*c^3*d*f*g*h^3*q + c^4* 
f*h^4*q)*b^4)*x)/(b^4*d^4))/f
 

Giac [F(-1)]

Timed out. \[ \int (g+h x)^4 \log \left (e \left (f (a+b x)^p (c+d x)^q\right )^r\right ) \, dx=\text {Timed out} \] Input:

integrate((h*x+g)^4*log(e*(f*(b*x+a)^p*(d*x+c)^q)^r),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 27.10 (sec) , antiderivative size = 1128, normalized size of antiderivative = 3.38 \[ \int (g+h x)^4 \log \left (e \left (f (a+b x)^p (c+d x)^q\right )^r\right ) \, dx=\text {Too large to display} \] Input:

int(log(e*(f*(a + b*x)^p*(c + d*x)^q)^r)*(g + h*x)^4,x)
 

Output:

log(e*(f*(a + b*x)^p*(c + d*x)^q)^r)*(g^4*x + (h^4*x^5)/5 + 2*g^3*h*x^2 + 
g*h^3*x^4 + 2*g^2*h^2*x^3) - x^2*(((5*a*d + 5*b*c)*(((5*a*d + 5*b*c)*((h^3 
*r*(b*c*h*p + 5*b*d*g*p + a*d*h*q + 5*b*d*g*q))/(5*b*d) - (h^4*r*(p + q)*( 
5*a*d + 5*b*c))/(25*b*d)))/(5*b*d) - (g*h^2*r*(b*c*h*p + 2*b*d*g*p + a*d*h 
*q + 2*b*d*g*q))/(b*d) + (a*c*h^4*r*(p + q))/(5*b*d)))/(10*b*d) - (a*c*((h 
^3*r*(b*c*h*p + 5*b*d*g*p + a*d*h*q + 5*b*d*g*q))/(5*b*d) - (h^4*r*(p + q) 
*(5*a*d + 5*b*c))/(25*b*d)))/(2*b*d) + (g^2*h*r*(b*c*h*p + b*d*g*p + a*d*h 
*q + b*d*g*q))/(b*d)) - x^4*((h^3*r*(b*c*h*p + 5*b*d*g*p + a*d*h*q + 5*b*d 
*g*q))/(20*b*d) - (h^4*r*(p + q)*(5*a*d + 5*b*c))/(100*b*d)) - x*((a*c*((( 
5*a*d + 5*b*c)*((h^3*r*(b*c*h*p + 5*b*d*g*p + a*d*h*q + 5*b*d*g*q))/(5*b*d 
) - (h^4*r*(p + q)*(5*a*d + 5*b*c))/(25*b*d)))/(5*b*d) - (g*h^2*r*(b*c*h*p 
 + 2*b*d*g*p + a*d*h*q + 2*b*d*g*q))/(b*d) + (a*c*h^4*r*(p + q))/(5*b*d))) 
/(b*d) - ((5*a*d + 5*b*c)*(((5*a*d + 5*b*c)*(((5*a*d + 5*b*c)*((h^3*r*(b*c 
*h*p + 5*b*d*g*p + a*d*h*q + 5*b*d*g*q))/(5*b*d) - (h^4*r*(p + q)*(5*a*d + 
 5*b*c))/(25*b*d)))/(5*b*d) - (g*h^2*r*(b*c*h*p + 2*b*d*g*p + a*d*h*q + 2* 
b*d*g*q))/(b*d) + (a*c*h^4*r*(p + q))/(5*b*d)))/(5*b*d) - (a*c*((h^3*r*(b* 
c*h*p + 5*b*d*g*p + a*d*h*q + 5*b*d*g*q))/(5*b*d) - (h^4*r*(p + q)*(5*a*d 
+ 5*b*c))/(25*b*d)))/(b*d) + (2*g^2*h*r*(b*c*h*p + b*d*g*p + a*d*h*q + b*d 
*g*q))/(b*d)))/(5*b*d) + (g^3*r*(2*b*c*h*p + b*d*g*p + 2*a*d*h*q + b*d*g*q 
))/(b*d)) + x^3*(((5*a*d + 5*b*c)*((h^3*r*(b*c*h*p + 5*b*d*g*p + a*d*h*...
 

Reduce [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 1136, normalized size of antiderivative = 3.40 \[ \int (g+h x)^4 \log \left (e \left (f (a+b x)^p (c+d x)^q\right )^r\right ) \, dx =\text {Too large to display} \] Input:

int((h*x+g)^4*log(e*(f*(b*x+a)^p*(d*x+c)^q)^r),x)
 

Output:

( - 60*log(c + d*x)*a**5*d**5*h**4*q*r + 300*log(c + d*x)*a**4*b*d**5*g*h* 
*3*q*r - 600*log(c + d*x)*a**3*b**2*d**5*g**2*h**2*q*r + 600*log(c + d*x)* 
a**2*b**3*d**5*g**3*h*q*r - 300*log(c + d*x)*a*b**4*d**5*g**4*q*r + 60*log 
(c + d*x)*b**5*c**5*h**4*q*r - 300*log(c + d*x)*b**5*c**4*d*g*h**3*q*r + 6 
00*log(c + d*x)*b**5*c**3*d**2*g**2*h**2*q*r - 600*log(c + d*x)*b**5*c**2* 
d**3*g**3*h*q*r + 300*log(c + d*x)*b**5*c*d**4*g**4*q*r + 60*log(f**r*(c + 
 d*x)**(q*r)*(a + b*x)**(p*r)*e)*a**5*d**5*h**4 - 300*log(f**r*(c + d*x)** 
(q*r)*(a + b*x)**(p*r)*e)*a**4*b*d**5*g*h**3 + 600*log(f**r*(c + d*x)**(q* 
r)*(a + b*x)**(p*r)*e)*a**3*b**2*d**5*g**2*h**2 - 600*log(f**r*(c + d*x)** 
(q*r)*(a + b*x)**(p*r)*e)*a**2*b**3*d**5*g**3*h + 300*log(f**r*(c + d*x)** 
(q*r)*(a + b*x)**(p*r)*e)*a*b**4*d**5*g**4 + 300*log(f**r*(c + d*x)**(q*r) 
*(a + b*x)**(p*r)*e)*b**5*d**5*g**4*x + 600*log(f**r*(c + d*x)**(q*r)*(a + 
 b*x)**(p*r)*e)*b**5*d**5*g**3*h*x**2 + 600*log(f**r*(c + d*x)**(q*r)*(a + 
 b*x)**(p*r)*e)*b**5*d**5*g**2*h**2*x**3 + 300*log(f**r*(c + d*x)**(q*r)*( 
a + b*x)**(p*r)*e)*b**5*d**5*g*h**3*x**4 + 60*log(f**r*(c + d*x)**(q*r)*(a 
 + b*x)**(p*r)*e)*b**5*d**5*h**4*x**5 - 60*a**4*b*d**5*h**4*p*r*x + 300*a* 
*3*b**2*d**5*g*h**3*p*r*x + 30*a**3*b**2*d**5*h**4*p*r*x**2 - 600*a**2*b** 
3*d**5*g**2*h**2*p*r*x - 150*a**2*b**3*d**5*g*h**3*p*r*x**2 - 20*a**2*b**3 
*d**5*h**4*p*r*x**3 + 600*a*b**4*d**5*g**3*h*p*r*x + 300*a*b**4*d**5*g**2* 
h**2*p*r*x**2 + 100*a*b**4*d**5*g*h**3*p*r*x**3 + 15*a*b**4*d**5*h**4*p...