\(\int \frac {(f+g x)^2}{(a+b \log (c (d+e x)^n))^2} \, dx\) [95]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 259 \[ \int \frac {(f+g x)^2}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx=\frac {e^{-\frac {a}{b n}} (e f-d g)^2 (d+e x) \left (c (d+e x)^n\right )^{-1/n} \operatorname {ExpIntegralEi}\left (\frac {a+b \log \left (c (d+e x)^n\right )}{b n}\right )}{b^2 e^3 n^2}+\frac {4 e^{-\frac {2 a}{b n}} g (e f-d g) (d+e x)^2 \left (c (d+e x)^n\right )^{-2/n} \operatorname {ExpIntegralEi}\left (\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{b n}\right )}{b^2 e^3 n^2}+\frac {3 e^{-\frac {3 a}{b n}} g^2 (d+e x)^3 \left (c (d+e x)^n\right )^{-3/n} \operatorname {ExpIntegralEi}\left (\frac {3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{b n}\right )}{b^2 e^3 n^2}-\frac {(d+e x) (f+g x)^2}{b e n \left (a+b \log \left (c (d+e x)^n\right )\right )} \] Output:

(-d*g+e*f)^2*(e*x+d)*Ei((a+b*ln(c*(e*x+d)^n))/b/n)/b^2/e^3/exp(a/b/n)/n^2/ 
((c*(e*x+d)^n)^(1/n))+4*g*(-d*g+e*f)*(e*x+d)^2*Ei(2*(a+b*ln(c*(e*x+d)^n))/ 
b/n)/b^2/e^3/exp(2*a/b/n)/n^2/((c*(e*x+d)^n)^(2/n))+3*g^2*(e*x+d)^3*Ei(3*( 
a+b*ln(c*(e*x+d)^n))/b/n)/b^2/e^3/exp(3*a/b/n)/n^2/((c*(e*x+d)^n)^(3/n))-( 
e*x+d)*(g*x+f)^2/b/e/n/(a+b*ln(c*(e*x+d)^n))
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(1015\) vs. \(2(259)=518\).

Time = 0.41 (sec) , antiderivative size = 1015, normalized size of antiderivative = 3.92 \[ \int \frac {(f+g x)^2}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx =\text {Too large to display} \] Input:

Integrate[(f + g*x)^2/(a + b*Log[c*(d + e*x)^n])^2,x]
 

Output:

(-(b*d*e^2*E^((3*a)/(b*n))*f^2*n*(c*(d + e*x)^n)^(3/n)) - b*e^3*E^((3*a)/( 
b*n))*f^2*n*x*(c*(d + e*x)^n)^(3/n) - 2*b*d*e^2*E^((3*a)/(b*n))*f*g*n*x*(c 
*(d + e*x)^n)^(3/n) - 2*b*e^3*E^((3*a)/(b*n))*f*g*n*x^2*(c*(d + e*x)^n)^(3 
/n) - b*d*e^2*E^((3*a)/(b*n))*g^2*n*x^2*(c*(d + e*x)^n)^(3/n) - b*e^3*E^(( 
3*a)/(b*n))*g^2*n*x^3*(c*(d + e*x)^n)^(3/n) + a*e^2*E^((2*a)/(b*n))*f^2*(d 
 + e*x)*(c*(d + e*x)^n)^(2/n)*ExpIntegralEi[(a + b*Log[c*(d + e*x)^n])/(b* 
n)] - 2*a*d*e*E^((2*a)/(b*n))*f*g*(d + e*x)*(c*(d + e*x)^n)^(2/n)*ExpInteg 
ralEi[(a + b*Log[c*(d + e*x)^n])/(b*n)] + a*d^2*E^((2*a)/(b*n))*g^2*(d + e 
*x)*(c*(d + e*x)^n)^(2/n)*ExpIntegralEi[(a + b*Log[c*(d + e*x)^n])/(b*n)] 
+ 4*a*e*E^(a/(b*n))*f*g*(d + e*x)^2*(c*(d + e*x)^n)^n^(-1)*ExpIntegralEi[( 
2*(a + b*Log[c*(d + e*x)^n]))/(b*n)] - 4*a*d*E^(a/(b*n))*g^2*(d + e*x)^2*( 
c*(d + e*x)^n)^n^(-1)*ExpIntegralEi[(2*(a + b*Log[c*(d + e*x)^n]))/(b*n)] 
+ 3*a*g^2*(d + e*x)^3*ExpIntegralEi[(3*(a + b*Log[c*(d + e*x)^n]))/(b*n)] 
+ b*e^2*E^((2*a)/(b*n))*f^2*(d + e*x)*(c*(d + e*x)^n)^(2/n)*ExpIntegralEi[ 
(a + b*Log[c*(d + e*x)^n])/(b*n)]*Log[c*(d + e*x)^n] - 2*b*d*e*E^((2*a)/(b 
*n))*f*g*(d + e*x)*(c*(d + e*x)^n)^(2/n)*ExpIntegralEi[(a + b*Log[c*(d + e 
*x)^n])/(b*n)]*Log[c*(d + e*x)^n] + b*d^2*E^((2*a)/(b*n))*g^2*(d + e*x)*(c 
*(d + e*x)^n)^(2/n)*ExpIntegralEi[(a + b*Log[c*(d + e*x)^n])/(b*n)]*Log[c* 
(d + e*x)^n] + 4*b*e*E^(a/(b*n))*f*g*(d + e*x)^2*(c*(d + e*x)^n)^n^(-1)*Ex 
pIntegralEi[(2*(a + b*Log[c*(d + e*x)^n]))/(b*n)]*Log[c*(d + e*x)^n] - ...
 

Rubi [A] (verified)

Time = 1.53 (sec) , antiderivative size = 425, normalized size of antiderivative = 1.64, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {2847, 2846, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(f+g x)^2}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx\)

\(\Big \downarrow \) 2847

\(\displaystyle -\frac {2 (e f-d g) \int \frac {f+g x}{a+b \log \left (c (d+e x)^n\right )}dx}{b e n}+\frac {3 \int \frac {(f+g x)^2}{a+b \log \left (c (d+e x)^n\right )}dx}{b n}-\frac {(d+e x) (f+g x)^2}{b e n \left (a+b \log \left (c (d+e x)^n\right )\right )}\)

\(\Big \downarrow \) 2846

\(\displaystyle \frac {3 \int \left (\frac {(e f-d g)^2}{e^2 \left (a+b \log \left (c (d+e x)^n\right )\right )}+\frac {2 g (d+e x) (e f-d g)}{e^2 \left (a+b \log \left (c (d+e x)^n\right )\right )}+\frac {g^2 (d+e x)^2}{e^2 \left (a+b \log \left (c (d+e x)^n\right )\right )}\right )dx}{b n}-\frac {2 (e f-d g) \int \left (\frac {e f-d g}{e \left (a+b \log \left (c (d+e x)^n\right )\right )}+\frac {g (d+e x)}{e \left (a+b \log \left (c (d+e x)^n\right )\right )}\right )dx}{b e n}-\frac {(d+e x) (f+g x)^2}{b e n \left (a+b \log \left (c (d+e x)^n\right )\right )}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {3 \left (\frac {2 g e^{-\frac {2 a}{b n}} (d+e x)^2 (e f-d g) \left (c (d+e x)^n\right )^{-2/n} \operatorname {ExpIntegralEi}\left (\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{b n}\right )}{b e^3 n}+\frac {e^{-\frac {a}{b n}} (d+e x) (e f-d g)^2 \left (c (d+e x)^n\right )^{-1/n} \operatorname {ExpIntegralEi}\left (\frac {a+b \log \left (c (d+e x)^n\right )}{b n}\right )}{b e^3 n}+\frac {g^2 e^{-\frac {3 a}{b n}} (d+e x)^3 \left (c (d+e x)^n\right )^{-3/n} \operatorname {ExpIntegralEi}\left (\frac {3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{b n}\right )}{b e^3 n}\right )}{b n}-\frac {2 (e f-d g) \left (\frac {e^{-\frac {a}{b n}} (d+e x) (e f-d g) \left (c (d+e x)^n\right )^{-1/n} \operatorname {ExpIntegralEi}\left (\frac {a+b \log \left (c (d+e x)^n\right )}{b n}\right )}{b e^2 n}+\frac {g e^{-\frac {2 a}{b n}} (d+e x)^2 \left (c (d+e x)^n\right )^{-2/n} \operatorname {ExpIntegralEi}\left (\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{b n}\right )}{b e^2 n}\right )}{b e n}-\frac {(d+e x) (f+g x)^2}{b e n \left (a+b \log \left (c (d+e x)^n\right )\right )}\)

Input:

Int[(f + g*x)^2/(a + b*Log[c*(d + e*x)^n])^2,x]
 

Output:

(-2*(e*f - d*g)*(((e*f - d*g)*(d + e*x)*ExpIntegralEi[(a + b*Log[c*(d + e* 
x)^n])/(b*n)])/(b*e^2*E^(a/(b*n))*n*(c*(d + e*x)^n)^n^(-1)) + (g*(d + e*x) 
^2*ExpIntegralEi[(2*(a + b*Log[c*(d + e*x)^n]))/(b*n)])/(b*e^2*E^((2*a)/(b 
*n))*n*(c*(d + e*x)^n)^(2/n))))/(b*e*n) + (3*(((e*f - d*g)^2*(d + e*x)*Exp 
IntegralEi[(a + b*Log[c*(d + e*x)^n])/(b*n)])/(b*e^3*E^(a/(b*n))*n*(c*(d + 
 e*x)^n)^n^(-1)) + (2*g*(e*f - d*g)*(d + e*x)^2*ExpIntegralEi[(2*(a + b*Lo 
g[c*(d + e*x)^n]))/(b*n)])/(b*e^3*E^((2*a)/(b*n))*n*(c*(d + e*x)^n)^(2/n)) 
 + (g^2*(d + e*x)^3*ExpIntegralEi[(3*(a + b*Log[c*(d + e*x)^n]))/(b*n)])/( 
b*e^3*E^((3*a)/(b*n))*n*(c*(d + e*x)^n)^(3/n))))/(b*n) - ((d + e*x)*(f + g 
*x)^2)/(b*e*n*(a + b*Log[c*(d + e*x)^n]))
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2846
Int[((f_.) + (g_.)*(x_))^(q_.)/((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.) 
]*(b_.)), x_Symbol] :> Int[ExpandIntegrand[(f + g*x)^q/(a + b*Log[c*(d + e* 
x)^n]), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] & 
& IGtQ[q, 0]
 

rule 2847
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_. 
)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)*(f + g*x)^q*((a + b*Log[c*(d + e 
*x)^n])^(p + 1)/(b*e*n*(p + 1))), x] + (-Simp[(q + 1)/(b*n*(p + 1))   Int[( 
f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^(p + 1), x], x] + Simp[q*((e*f - d*g) 
/(b*e*n*(p + 1)))   Int[(f + g*x)^(q - 1)*(a + b*Log[c*(d + e*x)^n])^(p + 1 
), x], x]) /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && Lt 
Q[p, -1] && GtQ[q, 0]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.77 (sec) , antiderivative size = 5123, normalized size of antiderivative = 19.78

method result size
risch \(\text {Expression too large to display}\) \(5123\)

Input:

int((g*x+f)^2/(a+b*ln(c*(e*x+d)^n))^2,x,method=_RETURNVERBOSE)
 

Output:

result too large to display
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 433, normalized size of antiderivative = 1.67 \[ \int \frac {(f+g x)^2}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx=\frac {{\left (4 \, {\left (a e f g - a d g^{2} + {\left (b e f g - b d g^{2}\right )} n \log \left (e x + d\right ) + {\left (b e f g - b d g^{2}\right )} \log \left (c\right )\right )} e^{\left (\frac {b \log \left (c\right ) + a}{b n}\right )} \operatorname {log\_integral}\left ({\left (e^{2} x^{2} + 2 \, d e x + d^{2}\right )} e^{\left (\frac {2 \, {\left (b \log \left (c\right ) + a\right )}}{b n}\right )}\right ) + {\left (a e^{2} f^{2} - 2 \, a d e f g + a d^{2} g^{2} + {\left (b e^{2} f^{2} - 2 \, b d e f g + b d^{2} g^{2}\right )} n \log \left (e x + d\right ) + {\left (b e^{2} f^{2} - 2 \, b d e f g + b d^{2} g^{2}\right )} \log \left (c\right )\right )} e^{\left (\frac {2 \, {\left (b \log \left (c\right ) + a\right )}}{b n}\right )} \operatorname {log\_integral}\left ({\left (e x + d\right )} e^{\left (\frac {b \log \left (c\right ) + a}{b n}\right )}\right ) - {\left (b e^{3} g^{2} n x^{3} + b d e^{2} f^{2} n + {\left (2 \, b e^{3} f g + b d e^{2} g^{2}\right )} n x^{2} + {\left (b e^{3} f^{2} + 2 \, b d e^{2} f g\right )} n x\right )} e^{\left (\frac {3 \, {\left (b \log \left (c\right ) + a\right )}}{b n}\right )} + 3 \, {\left (b g^{2} n \log \left (e x + d\right ) + b g^{2} \log \left (c\right ) + a g^{2}\right )} \operatorname {log\_integral}\left ({\left (e^{3} x^{3} + 3 \, d e^{2} x^{2} + 3 \, d^{2} e x + d^{3}\right )} e^{\left (\frac {3 \, {\left (b \log \left (c\right ) + a\right )}}{b n}\right )}\right )\right )} e^{\left (-\frac {3 \, {\left (b \log \left (c\right ) + a\right )}}{b n}\right )}}{b^{3} e^{3} n^{3} \log \left (e x + d\right ) + b^{3} e^{3} n^{2} \log \left (c\right ) + a b^{2} e^{3} n^{2}} \] Input:

integrate((g*x+f)^2/(a+b*log(c*(e*x+d)^n))^2,x, algorithm="fricas")
 

Output:

(4*(a*e*f*g - a*d*g^2 + (b*e*f*g - b*d*g^2)*n*log(e*x + d) + (b*e*f*g - b* 
d*g^2)*log(c))*e^((b*log(c) + a)/(b*n))*log_integral((e^2*x^2 + 2*d*e*x + 
d^2)*e^(2*(b*log(c) + a)/(b*n))) + (a*e^2*f^2 - 2*a*d*e*f*g + a*d^2*g^2 + 
(b*e^2*f^2 - 2*b*d*e*f*g + b*d^2*g^2)*n*log(e*x + d) + (b*e^2*f^2 - 2*b*d* 
e*f*g + b*d^2*g^2)*log(c))*e^(2*(b*log(c) + a)/(b*n))*log_integral((e*x + 
d)*e^((b*log(c) + a)/(b*n))) - (b*e^3*g^2*n*x^3 + b*d*e^2*f^2*n + (2*b*e^3 
*f*g + b*d*e^2*g^2)*n*x^2 + (b*e^3*f^2 + 2*b*d*e^2*f*g)*n*x)*e^(3*(b*log(c 
) + a)/(b*n)) + 3*(b*g^2*n*log(e*x + d) + b*g^2*log(c) + a*g^2)*log_integr 
al((e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3)*e^(3*(b*log(c) + a)/(b*n))))* 
e^(-3*(b*log(c) + a)/(b*n))/(b^3*e^3*n^3*log(e*x + d) + b^3*e^3*n^2*log(c) 
 + a*b^2*e^3*n^2)
 

Sympy [F]

\[ \int \frac {(f+g x)^2}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx=\int \frac {\left (f + g x\right )^{2}}{\left (a + b \log {\left (c \left (d + e x\right )^{n} \right )}\right )^{2}}\, dx \] Input:

integrate((g*x+f)**2/(a+b*ln(c*(e*x+d)**n))**2,x)
 

Output:

Integral((f + g*x)**2/(a + b*log(c*(d + e*x)**n))**2, x)
 

Maxima [F]

\[ \int \frac {(f+g x)^2}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx=\int { \frac {{\left (g x + f\right )}^{2}}{{\left (b \log \left ({\left (e x + d\right )}^{n} c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate((g*x+f)^2/(a+b*log(c*(e*x+d)^n))^2,x, algorithm="maxima")
 

Output:

-(e*g^2*x^3 + d*f^2 + (2*e*f*g + d*g^2)*x^2 + (e*f^2 + 2*d*f*g)*x)/(b^2*e* 
n*log((e*x + d)^n) + b^2*e*n*log(c) + a*b*e*n) + integrate((3*e*g^2*x^2 + 
e*f^2 + 2*d*f*g + 2*(2*e*f*g + d*g^2)*x)/(b^2*e*n*log((e*x + d)^n) + b^2*e 
*n*log(c) + a*b*e*n), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2031 vs. \(2 (260) = 520\).

Time = 0.17 (sec) , antiderivative size = 2031, normalized size of antiderivative = 7.84 \[ \int \frac {(f+g x)^2}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx=\text {Too large to display} \] Input:

integrate((g*x+f)^2/(a+b*log(c*(e*x+d)^n))^2,x, algorithm="giac")
 

Output:

b*e^2*f^2*n*Ei(log(c)/n + a/(b*n) + log(e*x + d))*e^(-a/(b*n))*log(e*x + d 
)/((b^3*e^3*n^3*log(e*x + d) + b^3*e^3*n^2*log(c) + a*b^2*e^3*n^2)*c^(1/n) 
) - 2*b*d*e*f*g*n*Ei(log(c)/n + a/(b*n) + log(e*x + d))*e^(-a/(b*n))*log(e 
*x + d)/((b^3*e^3*n^3*log(e*x + d) + b^3*e^3*n^2*log(c) + a*b^2*e^3*n^2)*c 
^(1/n)) + b*d^2*g^2*n*Ei(log(c)/n + a/(b*n) + log(e*x + d))*e^(-a/(b*n))*l 
og(e*x + d)/((b^3*e^3*n^3*log(e*x + d) + b^3*e^3*n^2*log(c) + a*b^2*e^3*n^ 
2)*c^(1/n)) - (e*x + d)*b*e^2*f^2*n/(b^3*e^3*n^3*log(e*x + d) + b^3*e^3*n^ 
2*log(c) + a*b^2*e^3*n^2) - 2*(e*x + d)^2*b*e*f*g*n/(b^3*e^3*n^3*log(e*x + 
 d) + b^3*e^3*n^2*log(c) + a*b^2*e^3*n^2) + 2*(e*x + d)*b*d*e*f*g*n/(b^3*e 
^3*n^3*log(e*x + d) + b^3*e^3*n^2*log(c) + a*b^2*e^3*n^2) - (e*x + d)^3*b* 
g^2*n/(b^3*e^3*n^3*log(e*x + d) + b^3*e^3*n^2*log(c) + a*b^2*e^3*n^2) + 2* 
(e*x + d)^2*b*d*g^2*n/(b^3*e^3*n^3*log(e*x + d) + b^3*e^3*n^2*log(c) + a*b 
^2*e^3*n^2) - (e*x + d)*b*d^2*g^2*n/(b^3*e^3*n^3*log(e*x + d) + b^3*e^3*n^ 
2*log(c) + a*b^2*e^3*n^2) + 4*b*e*f*g*n*Ei(2*log(c)/n + 2*a/(b*n) + 2*log( 
e*x + d))*e^(-2*a/(b*n))*log(e*x + d)/((b^3*e^3*n^3*log(e*x + d) + b^3*e^3 
*n^2*log(c) + a*b^2*e^3*n^2)*c^(2/n)) - 4*b*d*g^2*n*Ei(2*log(c)/n + 2*a/(b 
*n) + 2*log(e*x + d))*e^(-2*a/(b*n))*log(e*x + d)/((b^3*e^3*n^3*log(e*x + 
d) + b^3*e^3*n^2*log(c) + a*b^2*e^3*n^2)*c^(2/n)) + b*e^2*f^2*Ei(log(c)/n 
+ a/(b*n) + log(e*x + d))*e^(-a/(b*n))*log(c)/((b^3*e^3*n^3*log(e*x + d) + 
 b^3*e^3*n^2*log(c) + a*b^2*e^3*n^2)*c^(1/n)) - 2*b*d*e*f*g*Ei(log(c)/n...
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(f+g x)^2}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx=\int \frac {{\left (f+g\,x\right )}^2}{{\left (a+b\,\ln \left (c\,{\left (d+e\,x\right )}^n\right )\right )}^2} \,d x \] Input:

int((f + g*x)^2/(a + b*log(c*(d + e*x)^n))^2,x)
 

Output:

int((f + g*x)^2/(a + b*log(c*(d + e*x)^n))^2, x)
 

Reduce [F]

\[ \int \frac {(f+g x)^2}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx =\text {Too large to display} \] Input:

int((g*x+f)^2/(a+b*log(c*(e*x+d)^n))^2,x)
 

Output:

(int(x**3/(log((d + e*x)**n*c)**2*b**2*d + log((d + e*x)**n*c)**2*b**2*e*x 
 + 2*log((d + e*x)**n*c)*a*b*d + 2*log((d + e*x)**n*c)*a*b*e*x + a**2*d + 
a**2*e*x),x)*log((d + e*x)**n*c)*a*b*e**2*g**2*n + int(x**3/(log((d + e*x) 
**n*c)**2*b**2*d + log((d + e*x)**n*c)**2*b**2*e*x + 2*log((d + e*x)**n*c) 
*a*b*d + 2*log((d + e*x)**n*c)*a*b*e*x + a**2*d + a**2*e*x),x)*a**2*e**2*g 
**2*n + int(x**2/(log((d + e*x)**n*c)**2*b**2*d + log((d + e*x)**n*c)**2*b 
**2*e*x + 2*log((d + e*x)**n*c)*a*b*d + 2*log((d + e*x)**n*c)*a*b*e*x + a* 
*2*d + a**2*e*x),x)*log((d + e*x)**n*c)*a*b*d*e*g**2*n + 2*int(x**2/(log(( 
d + e*x)**n*c)**2*b**2*d + log((d + e*x)**n*c)**2*b**2*e*x + 2*log((d + e* 
x)**n*c)*a*b*d + 2*log((d + e*x)**n*c)*a*b*e*x + a**2*d + a**2*e*x),x)*log 
((d + e*x)**n*c)*a*b*e**2*f*g*n + int(x**2/(log((d + e*x)**n*c)**2*b**2*d 
+ log((d + e*x)**n*c)**2*b**2*e*x + 2*log((d + e*x)**n*c)*a*b*d + 2*log((d 
 + e*x)**n*c)*a*b*e*x + a**2*d + a**2*e*x),x)*a**2*d*e*g**2*n + 2*int(x**2 
/(log((d + e*x)**n*c)**2*b**2*d + log((d + e*x)**n*c)**2*b**2*e*x + 2*log( 
(d + e*x)**n*c)*a*b*d + 2*log((d + e*x)**n*c)*a*b*e*x + a**2*d + a**2*e*x) 
,x)*a**2*e**2*f*g*n + 2*int(x/(log((d + e*x)**n*c)**2*b**2*d + log((d + e* 
x)**n*c)**2*b**2*e*x + 2*log((d + e*x)**n*c)*a*b*d + 2*log((d + e*x)**n*c) 
*a*b*e*x + a**2*d + a**2*e*x),x)*log((d + e*x)**n*c)*a*b*d*e*f*g*n + int(x 
/(log((d + e*x)**n*c)**2*b**2*d + log((d + e*x)**n*c)**2*b**2*e*x + 2*log( 
(d + e*x)**n*c)*a*b*d + 2*log((d + e*x)**n*c)*a*b*e*x + a**2*d + a**2*e...