\(\int \frac {a+b \log (c (d+e x)^n)}{x^2 (f+g x)^2} \, dx\) [254]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 240 \[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x^2 (f+g x)^2} \, dx=\frac {b e n \log (x)}{d f^2}-\frac {b e n \log (d+e x)}{d f^2}+\frac {b e g n \log (d+e x)}{f^2 (e f-d g)}-\frac {a+b \log \left (c (d+e x)^n\right )}{f^2 x}-\frac {g \left (a+b \log \left (c (d+e x)^n\right )\right )}{f^2 (f+g x)}-\frac {2 g \log \left (-\frac {e x}{d}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{f^3}-\frac {b e g n \log (f+g x)}{f^2 (e f-d g)}+\frac {2 g \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e (f+g x)}{e f-d g}\right )}{f^3}+\frac {2 b g n \operatorname {PolyLog}\left (2,-\frac {g (d+e x)}{e f-d g}\right )}{f^3}-\frac {2 b g n \operatorname {PolyLog}\left (2,1+\frac {e x}{d}\right )}{f^3} \] Output:

b*e*n*ln(x)/d/f^2-b*e*n*ln(e*x+d)/d/f^2+b*e*g*n*ln(e*x+d)/f^2/(-d*g+e*f)-( 
a+b*ln(c*(e*x+d)^n))/f^2/x-g*(a+b*ln(c*(e*x+d)^n))/f^2/(g*x+f)-2*g*ln(-e*x 
/d)*(a+b*ln(c*(e*x+d)^n))/f^3-b*e*g*n*ln(g*x+f)/f^2/(-d*g+e*f)+2*g*(a+b*ln 
(c*(e*x+d)^n))*ln(e*(g*x+f)/(-d*g+e*f))/f^3+2*b*g*n*polylog(2,-g*(e*x+d)/( 
-d*g+e*f))/f^3-2*b*g*n*polylog(2,1+e*x/d)/f^3
 

Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 199, normalized size of antiderivative = 0.83 \[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x^2 (f+g x)^2} \, dx=\frac {\frac {b e f n (\log (x)-\log (d+e x))}{d}-\frac {f \left (a+b \log \left (c (d+e x)^n\right )\right )}{x}-\frac {f g \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x}-2 g \log \left (-\frac {e x}{d}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )+\frac {b e f g n (\log (d+e x)-\log (f+g x))}{e f-d g}+2 g \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e (f+g x)}{e f-d g}\right )+2 b g n \operatorname {PolyLog}\left (2,\frac {g (d+e x)}{-e f+d g}\right )-2 b g n \operatorname {PolyLog}\left (2,1+\frac {e x}{d}\right )}{f^3} \] Input:

Integrate[(a + b*Log[c*(d + e*x)^n])/(x^2*(f + g*x)^2),x]
 

Output:

((b*e*f*n*(Log[x] - Log[d + e*x]))/d - (f*(a + b*Log[c*(d + e*x)^n]))/x - 
(f*g*(a + b*Log[c*(d + e*x)^n]))/(f + g*x) - 2*g*Log[-((e*x)/d)]*(a + b*Lo 
g[c*(d + e*x)^n]) + (b*e*f*g*n*(Log[d + e*x] - Log[f + g*x]))/(e*f - d*g) 
+ 2*g*(a + b*Log[c*(d + e*x)^n])*Log[(e*(f + g*x))/(e*f - d*g)] + 2*b*g*n* 
PolyLog[2, (g*(d + e*x))/(-(e*f) + d*g)] - 2*b*g*n*PolyLog[2, 1 + (e*x)/d] 
)/f^3
 

Rubi [A] (verified)

Time = 0.87 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {2863, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \log \left (c (d+e x)^n\right )}{x^2 (f+g x)^2} \, dx\)

\(\Big \downarrow \) 2863

\(\displaystyle \int \left (\frac {2 g^2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f^3 (f+g x)}-\frac {2 g \left (a+b \log \left (c (d+e x)^n\right )\right )}{f^3 x}+\frac {g^2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f^2 (f+g x)^2}+\frac {a+b \log \left (c (d+e x)^n\right )}{f^2 x^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 g \log \left (-\frac {e x}{d}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{f^3}+\frac {2 g \log \left (\frac {e (f+g x)}{e f-d g}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{f^3}-\frac {g \left (a+b \log \left (c (d+e x)^n\right )\right )}{f^2 (f+g x)}-\frac {a+b \log \left (c (d+e x)^n\right )}{f^2 x}+\frac {2 b g n \operatorname {PolyLog}\left (2,-\frac {g (d+e x)}{e f-d g}\right )}{f^3}-\frac {2 b g n \operatorname {PolyLog}\left (2,\frac {e x}{d}+1\right )}{f^3}+\frac {b e g n \log (d+e x)}{f^2 (e f-d g)}-\frac {b e g n \log (f+g x)}{f^2 (e f-d g)}+\frac {b e n \log (x)}{d f^2}-\frac {b e n \log (d+e x)}{d f^2}\)

Input:

Int[(a + b*Log[c*(d + e*x)^n])/(x^2*(f + g*x)^2),x]
 

Output:

(b*e*n*Log[x])/(d*f^2) - (b*e*n*Log[d + e*x])/(d*f^2) + (b*e*g*n*Log[d + e 
*x])/(f^2*(e*f - d*g)) - (a + b*Log[c*(d + e*x)^n])/(f^2*x) - (g*(a + b*Lo 
g[c*(d + e*x)^n]))/(f^2*(f + g*x)) - (2*g*Log[-((e*x)/d)]*(a + b*Log[c*(d 
+ e*x)^n]))/f^3 - (b*e*g*n*Log[f + g*x])/(f^2*(e*f - d*g)) + (2*g*(a + b*L 
og[c*(d + e*x)^n])*Log[(e*(f + g*x))/(e*f - d*g)])/f^3 + (2*b*g*n*PolyLog[ 
2, -((g*(d + e*x))/(e*f - d*g))])/f^3 - (2*b*g*n*PolyLog[2, 1 + (e*x)/d])/ 
f^3
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2863
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_)) 
^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a 
 + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a, b, c 
, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.29 (sec) , antiderivative size = 437, normalized size of antiderivative = 1.82

method result size
risch \(-\frac {b \ln \left (\left (e x +d \right )^{n}\right ) g}{f^{2} \left (g x +f \right )}+\frac {2 b \ln \left (\left (e x +d \right )^{n}\right ) g \ln \left (g x +f \right )}{f^{3}}-\frac {b \ln \left (\left (e x +d \right )^{n}\right )}{f^{2} x}-\frac {2 b \ln \left (\left (e x +d \right )^{n}\right ) g \ln \left (x \right )}{f^{3}}+\frac {2 b n g \operatorname {dilog}\left (\frac {e x +d}{d}\right )}{f^{3}}+\frac {2 b n g \ln \left (x \right ) \ln \left (\frac {e x +d}{d}\right )}{f^{3}}-\frac {2 b n g \operatorname {dilog}\left (\frac {\left (g x +f \right ) e +d g -e f}{d g -e f}\right )}{f^{3}}-\frac {2 b n g \ln \left (g x +f \right ) \ln \left (\frac {\left (g x +f \right ) e +d g -e f}{d g -e f}\right )}{f^{3}}+\frac {b e n g \ln \left (g x +f \right )}{f^{2} \left (d g -e f \right )}-\frac {2 b e n \ln \left (e x +d \right ) g}{f^{2} \left (d g -e f \right )}+\frac {b \,e^{2} n \ln \left (e x +d \right )}{f \left (d g -e f \right ) d}+\frac {b e n \ln \left (x \right )}{d \,f^{2}}+\left (\frac {i b \pi \,\operatorname {csgn}\left (i \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2}}{2}-\frac {i b \pi \,\operatorname {csgn}\left (i \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \right )}{2}-\frac {i b \pi \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{3}}{2}+\frac {i b \pi \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} \operatorname {csgn}\left (i c \right )}{2}+b \ln \left (c \right )+a \right ) \left (-\frac {g}{f^{2} \left (g x +f \right )}+\frac {2 g \ln \left (g x +f \right )}{f^{3}}-\frac {1}{f^{2} x}-\frac {2 g \ln \left (x \right )}{f^{3}}\right )\) \(437\)

Input:

int((a+b*ln(c*(e*x+d)^n))/x^2/(g*x+f)^2,x,method=_RETURNVERBOSE)
 

Output:

-b*ln((e*x+d)^n)/f^2/(g*x+f)*g+2*b*ln((e*x+d)^n)/f^3*g*ln(g*x+f)-b*ln((e*x 
+d)^n)/f^2/x-2*b*ln((e*x+d)^n)/f^3*g*ln(x)+2*b*n/f^3*g*dilog((e*x+d)/d)+2* 
b*n/f^3*g*ln(x)*ln((e*x+d)/d)-2*b*n/f^3*g*dilog(((g*x+f)*e+d*g-e*f)/(d*g-e 
*f))-2*b*n/f^3*g*ln(g*x+f)*ln(((g*x+f)*e+d*g-e*f)/(d*g-e*f))+b*e*n/f^2*g/( 
d*g-e*f)*ln(g*x+f)-2*b*e*n/f^2/(d*g-e*f)*ln(e*x+d)*g+b*e^2*n/f/(d*g-e*f)/d 
*ln(e*x+d)+b*e*n*ln(x)/d/f^2+(1/2*I*b*Pi*csgn(I*(e*x+d)^n)*csgn(I*c*(e*x+d 
)^n)^2-1/2*I*b*Pi*csgn(I*(e*x+d)^n)*csgn(I*c*(e*x+d)^n)*csgn(I*c)-1/2*I*b* 
Pi*csgn(I*c*(e*x+d)^n)^3+1/2*I*b*Pi*csgn(I*c*(e*x+d)^n)^2*csgn(I*c)+b*ln(c 
)+a)*(-1/f^2/(g*x+f)*g+2/f^3*g*ln(g*x+f)-1/f^2/x-2/f^3*g*ln(x))
 

Fricas [F]

\[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x^2 (f+g x)^2} \, dx=\int { \frac {b \log \left ({\left (e x + d\right )}^{n} c\right ) + a}{{\left (g x + f\right )}^{2} x^{2}} \,d x } \] Input:

integrate((a+b*log(c*(e*x+d)^n))/x^2/(g*x+f)^2,x, algorithm="fricas")
 

Output:

integral((b*log((e*x + d)^n*c) + a)/(g^2*x^4 + 2*f*g*x^3 + f^2*x^2), x)
 

Sympy [F]

\[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x^2 (f+g x)^2} \, dx=\int \frac {a + b \log {\left (c \left (d + e x\right )^{n} \right )}}{x^{2} \left (f + g x\right )^{2}}\, dx \] Input:

integrate((a+b*ln(c*(e*x+d)**n))/x**2/(g*x+f)**2,x)
 

Output:

Integral((a + b*log(c*(d + e*x)**n))/(x**2*(f + g*x)**2), x)
 

Maxima [F]

\[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x^2 (f+g x)^2} \, dx=\int { \frac {b \log \left ({\left (e x + d\right )}^{n} c\right ) + a}{{\left (g x + f\right )}^{2} x^{2}} \,d x } \] Input:

integrate((a+b*log(c*(e*x+d)^n))/x^2/(g*x+f)^2,x, algorithm="maxima")
 

Output:

-a*((2*g*x + f)/(f^2*g*x^2 + f^3*x) - 2*g*log(g*x + f)/f^3 + 2*g*log(x)/f^ 
3) + b*integrate((log((e*x + d)^n) + log(c))/(g^2*x^4 + 2*f*g*x^3 + f^2*x^ 
2), x)
 

Giac [F]

\[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x^2 (f+g x)^2} \, dx=\int { \frac {b \log \left ({\left (e x + d\right )}^{n} c\right ) + a}{{\left (g x + f\right )}^{2} x^{2}} \,d x } \] Input:

integrate((a+b*log(c*(e*x+d)^n))/x^2/(g*x+f)^2,x, algorithm="giac")
 

Output:

integrate((b*log((e*x + d)^n*c) + a)/((g*x + f)^2*x^2), x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x^2 (f+g x)^2} \, dx=\int \frac {a+b\,\ln \left (c\,{\left (d+e\,x\right )}^n\right )}{x^2\,{\left (f+g\,x\right )}^2} \,d x \] Input:

int((a + b*log(c*(d + e*x)^n))/(x^2*(f + g*x)^2),x)
 

Output:

int((a + b*log(c*(d + e*x)^n))/(x^2*(f + g*x)^2), x)
 

Reduce [F]

\[ \int \frac {a+b \log \left (c (d+e x)^n\right )}{x^2 (f+g x)^2} \, dx=\frac {\left (\int \frac {\mathrm {log}\left (\left (e x +d \right )^{n} c \right )}{g^{2} x^{4}+2 f g \,x^{3}+f^{2} x^{2}}d x \right ) b \,f^{4} x +\left (\int \frac {\mathrm {log}\left (\left (e x +d \right )^{n} c \right )}{g^{2} x^{4}+2 f g \,x^{3}+f^{2} x^{2}}d x \right ) b \,f^{3} g \,x^{2}+2 \,\mathrm {log}\left (g x +f \right ) a f g x +2 \,\mathrm {log}\left (g x +f \right ) a \,g^{2} x^{2}-2 \,\mathrm {log}\left (x \right ) a f g x -2 \,\mathrm {log}\left (x \right ) a \,g^{2} x^{2}-a \,f^{2}+2 a \,g^{2} x^{2}}{f^{3} x \left (g x +f \right )} \] Input:

int((a+b*log(c*(e*x+d)^n))/x^2/(g*x+f)^2,x)
 

Output:

(int(log((d + e*x)**n*c)/(f**2*x**2 + 2*f*g*x**3 + g**2*x**4),x)*b*f**4*x 
+ int(log((d + e*x)**n*c)/(f**2*x**2 + 2*f*g*x**3 + g**2*x**4),x)*b*f**3*g 
*x**2 + 2*log(f + g*x)*a*f*g*x + 2*log(f + g*x)*a*g**2*x**2 - 2*log(x)*a*f 
*g*x - 2*log(x)*a*g**2*x**2 - a*f**2 + 2*a*g**2*x**2)/(f**3*x*(f + g*x))