\(\int \frac {\log (c+d x)}{x^2 (a+b x^3)} \, dx\) [291]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 398 \[ \int \frac {\log (c+d x)}{x^2 \left (a+b x^3\right )} \, dx=\frac {d \log (x)}{a c}-\frac {d \log (c+d x)}{a c}-\frac {\log (c+d x)}{a x}+\frac {\sqrt [3]{b} \log \left (-\frac {d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right ) \log (c+d x)}{3 a^{4/3}}-\frac {\sqrt [3]{-1} \sqrt [3]{b} \log \left (\frac {d \left (\sqrt [3]{a}-\sqrt [3]{-1} \sqrt [3]{b} x\right )}{\sqrt [3]{-1} \sqrt [3]{b} c+\sqrt [3]{a} d}\right ) \log (c+d x)}{3 a^{4/3}}+\frac {(-1)^{2/3} \sqrt [3]{b} \log \left (-\frac {d \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{(-1)^{2/3} \sqrt [3]{b} c-\sqrt [3]{a} d}\right ) \log (c+d x)}{3 a^{4/3}}+\frac {\sqrt [3]{b} \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right )}{3 a^{4/3}}+\frac {(-1)^{2/3} \sqrt [3]{b} \operatorname {PolyLog}\left (2,\frac {(-1)^{2/3} \sqrt [3]{b} (c+d x)}{(-1)^{2/3} \sqrt [3]{b} c-\sqrt [3]{a} d}\right )}{3 a^{4/3}}-\frac {\sqrt [3]{-1} \sqrt [3]{b} \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{-1} \sqrt [3]{b} (c+d x)}{\sqrt [3]{-1} \sqrt [3]{b} c+\sqrt [3]{a} d}\right )}{3 a^{4/3}} \] Output:

d*ln(x)/a/c-d*ln(d*x+c)/a/c-ln(d*x+c)/a/x+1/3*b^(1/3)*ln(-d*(a^(1/3)+b^(1/ 
3)*x)/(b^(1/3)*c-a^(1/3)*d))*ln(d*x+c)/a^(4/3)-1/3*(-1)^(1/3)*b^(1/3)*ln(d 
*(a^(1/3)-(-1)^(1/3)*b^(1/3)*x)/((-1)^(1/3)*b^(1/3)*c+a^(1/3)*d))*ln(d*x+c 
)/a^(4/3)+1/3*(-1)^(2/3)*b^(1/3)*ln(-d*(a^(1/3)+(-1)^(2/3)*b^(1/3)*x)/((-1 
)^(2/3)*b^(1/3)*c-a^(1/3)*d))*ln(d*x+c)/a^(4/3)+1/3*b^(1/3)*polylog(2,b^(1 
/3)*(d*x+c)/(b^(1/3)*c-a^(1/3)*d))/a^(4/3)+1/3*(-1)^(2/3)*b^(1/3)*polylog( 
2,(-1)^(2/3)*b^(1/3)*(d*x+c)/((-1)^(2/3)*b^(1/3)*c-a^(1/3)*d))/a^(4/3)-1/3 
*(-1)^(1/3)*b^(1/3)*polylog(2,(-1)^(1/3)*b^(1/3)*(d*x+c)/((-1)^(1/3)*b^(1/ 
3)*c+a^(1/3)*d))/a^(4/3)
 

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 378, normalized size of antiderivative = 0.95 \[ \int \frac {\log (c+d x)}{x^2 \left (a+b x^3\right )} \, dx=\frac {3 \sqrt [3]{a} d x \log (x)-3 \sqrt [3]{a} c \log (c+d x)-3 \sqrt [3]{a} d x \log (c+d x)+\sqrt [3]{b} c x \log \left (\frac {d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{-\sqrt [3]{b} c+\sqrt [3]{a} d}\right ) \log (c+d x)-\sqrt [3]{-1} \sqrt [3]{b} c x \log \left (\frac {d \left (\sqrt [3]{a}-\sqrt [3]{-1} \sqrt [3]{b} x\right )}{\sqrt [3]{-1} \sqrt [3]{b} c+\sqrt [3]{a} d}\right ) \log (c+d x)+(-1)^{2/3} \sqrt [3]{b} c x \log \left (\frac {d \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{-(-1)^{2/3} \sqrt [3]{b} c+\sqrt [3]{a} d}\right ) \log (c+d x)+\sqrt [3]{b} c x \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right )+(-1)^{2/3} \sqrt [3]{b} c x \operatorname {PolyLog}\left (2,\frac {(-1)^{2/3} \sqrt [3]{b} (c+d x)}{(-1)^{2/3} \sqrt [3]{b} c-\sqrt [3]{a} d}\right )-\sqrt [3]{-1} \sqrt [3]{b} c x \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{-1} \sqrt [3]{b} (c+d x)}{\sqrt [3]{-1} \sqrt [3]{b} c+\sqrt [3]{a} d}\right )}{3 a^{4/3} c x} \] Input:

Integrate[Log[c + d*x]/(x^2*(a + b*x^3)),x]
 

Output:

(3*a^(1/3)*d*x*Log[x] - 3*a^(1/3)*c*Log[c + d*x] - 3*a^(1/3)*d*x*Log[c + d 
*x] + b^(1/3)*c*x*Log[(d*(a^(1/3) + b^(1/3)*x))/(-(b^(1/3)*c) + a^(1/3)*d) 
]*Log[c + d*x] - (-1)^(1/3)*b^(1/3)*c*x*Log[(d*(a^(1/3) - (-1)^(1/3)*b^(1/ 
3)*x))/((-1)^(1/3)*b^(1/3)*c + a^(1/3)*d)]*Log[c + d*x] + (-1)^(2/3)*b^(1/ 
3)*c*x*Log[(d*(a^(1/3) + (-1)^(2/3)*b^(1/3)*x))/(-((-1)^(2/3)*b^(1/3)*c) + 
 a^(1/3)*d)]*Log[c + d*x] + b^(1/3)*c*x*PolyLog[2, (b^(1/3)*(c + d*x))/(b^ 
(1/3)*c - a^(1/3)*d)] + (-1)^(2/3)*b^(1/3)*c*x*PolyLog[2, ((-1)^(2/3)*b^(1 
/3)*(c + d*x))/((-1)^(2/3)*b^(1/3)*c - a^(1/3)*d)] - (-1)^(1/3)*b^(1/3)*c* 
x*PolyLog[2, ((-1)^(1/3)*b^(1/3)*(c + d*x))/((-1)^(1/3)*b^(1/3)*c + a^(1/3 
)*d)])/(3*a^(4/3)*c*x)
 

Rubi [A] (verified)

Time = 1.29 (sec) , antiderivative size = 398, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {2863, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\log (c+d x)}{x^2 \left (a+b x^3\right )} \, dx\)

\(\Big \downarrow \) 2863

\(\displaystyle \int \left (\frac {\log (c+d x)}{a x^2}-\frac {b x \log (c+d x)}{a \left (a+b x^3\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt [3]{b} \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{b} (c+d x)}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right )}{3 a^{4/3}}+\frac {(-1)^{2/3} \sqrt [3]{b} \operatorname {PolyLog}\left (2,\frac {(-1)^{2/3} \sqrt [3]{b} (c+d x)}{(-1)^{2/3} \sqrt [3]{b} c-\sqrt [3]{a} d}\right )}{3 a^{4/3}}-\frac {\sqrt [3]{-1} \sqrt [3]{b} \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{-1} \sqrt [3]{b} (c+d x)}{\sqrt [3]{-1} \sqrt [3]{b} c+\sqrt [3]{a} d}\right )}{3 a^{4/3}}+\frac {\sqrt [3]{b} \log (c+d x) \log \left (-\frac {d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} c-\sqrt [3]{a} d}\right )}{3 a^{4/3}}-\frac {\sqrt [3]{-1} \sqrt [3]{b} \log (c+d x) \log \left (\frac {d \left (\sqrt [3]{a}-\sqrt [3]{-1} \sqrt [3]{b} x\right )}{\sqrt [3]{a} d+\sqrt [3]{-1} \sqrt [3]{b} c}\right )}{3 a^{4/3}}+\frac {(-1)^{2/3} \sqrt [3]{b} \log (c+d x) \log \left (-\frac {d \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{(-1)^{2/3} \sqrt [3]{b} c-\sqrt [3]{a} d}\right )}{3 a^{4/3}}+\frac {d \log (x)}{a c}-\frac {d \log (c+d x)}{a c}-\frac {\log (c+d x)}{a x}\)

Input:

Int[Log[c + d*x]/(x^2*(a + b*x^3)),x]
 

Output:

(d*Log[x])/(a*c) - (d*Log[c + d*x])/(a*c) - Log[c + d*x]/(a*x) + (b^(1/3)* 
Log[-((d*(a^(1/3) + b^(1/3)*x))/(b^(1/3)*c - a^(1/3)*d))]*Log[c + d*x])/(3 
*a^(4/3)) - ((-1)^(1/3)*b^(1/3)*Log[(d*(a^(1/3) - (-1)^(1/3)*b^(1/3)*x))/( 
(-1)^(1/3)*b^(1/3)*c + a^(1/3)*d)]*Log[c + d*x])/(3*a^(4/3)) + ((-1)^(2/3) 
*b^(1/3)*Log[-((d*(a^(1/3) + (-1)^(2/3)*b^(1/3)*x))/((-1)^(2/3)*b^(1/3)*c 
- a^(1/3)*d))]*Log[c + d*x])/(3*a^(4/3)) + (b^(1/3)*PolyLog[2, (b^(1/3)*(c 
 + d*x))/(b^(1/3)*c - a^(1/3)*d)])/(3*a^(4/3)) + ((-1)^(2/3)*b^(1/3)*PolyL 
og[2, ((-1)^(2/3)*b^(1/3)*(c + d*x))/((-1)^(2/3)*b^(1/3)*c - a^(1/3)*d)])/ 
(3*a^(4/3)) - ((-1)^(1/3)*b^(1/3)*PolyLog[2, ((-1)^(1/3)*b^(1/3)*(c + d*x) 
)/((-1)^(1/3)*b^(1/3)*c + a^(1/3)*d)])/(3*a^(4/3))
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2863
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_)) 
^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a 
 + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a, b, c 
, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.61 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.31

method result size
derivativedivides \(d \left (\frac {\frac {\ln \left (-d x \right )}{c}-\frac {\ln \left (d x +c \right ) \left (d x +c \right )}{c d x}}{a}+\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 b c \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +a \,d^{3}-b \,c^{3}\right )}{\sum }\frac {\ln \left (d x +c \right ) \ln \left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )}{-\textit {\_R1} +c}}{3 a}\right )\) \(124\)
default \(d \left (\frac {\frac {\ln \left (-d x \right )}{c}-\frac {\ln \left (d x +c \right ) \left (d x +c \right )}{c d x}}{a}+\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 b c \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +a \,d^{3}-b \,c^{3}\right )}{\sum }\frac {\ln \left (d x +c \right ) \ln \left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )}{-\textit {\_R1} +c}}{3 a}\right )\) \(124\)
risch \(\frac {d \ln \left (-d x \right )}{a c}-\frac {d \ln \left (d x +c \right )}{a c}-\frac {\ln \left (d x +c \right )}{a x}+\frac {d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 b c \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +a \,d^{3}-b \,c^{3}\right )}{\sum }\frac {\ln \left (d x +c \right ) \ln \left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-d x +\textit {\_R1} -c}{\textit {\_R1}}\right )}{-\textit {\_R1} +c}\right )}{3 a}\) \(129\)

Input:

int(ln(d*x+c)/x^2/(b*x^3+a),x,method=_RETURNVERBOSE)
 

Output:

d*((1/c*ln(-d*x)-ln(d*x+c)*(d*x+c)/c/d/x)/a+1/3*sum(1/(-_R1+c)*(ln(d*x+c)* 
ln((-d*x+_R1-c)/_R1)+dilog((-d*x+_R1-c)/_R1)),_R1=RootOf(_Z^3*b-3*_Z^2*b*c 
+3*_Z*b*c^2+a*d^3-b*c^3))/a)
 

Fricas [F]

\[ \int \frac {\log (c+d x)}{x^2 \left (a+b x^3\right )} \, dx=\int { \frac {\log \left (d x + c\right )}{{\left (b x^{3} + a\right )} x^{2}} \,d x } \] Input:

integrate(log(d*x+c)/x^2/(b*x^3+a),x, algorithm="fricas")
 

Output:

integral(log(d*x + c)/(b*x^5 + a*x^2), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\log (c+d x)}{x^2 \left (a+b x^3\right )} \, dx=\text {Timed out} \] Input:

integrate(ln(d*x+c)/x**2/(b*x**3+a),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\log (c+d x)}{x^2 \left (a+b x^3\right )} \, dx=\int { \frac {\log \left (d x + c\right )}{{\left (b x^{3} + a\right )} x^{2}} \,d x } \] Input:

integrate(log(d*x+c)/x^2/(b*x^3+a),x, algorithm="maxima")
 

Output:

integrate(log(d*x + c)/((b*x^3 + a)*x^2), x)
 

Giac [F]

\[ \int \frac {\log (c+d x)}{x^2 \left (a+b x^3\right )} \, dx=\int { \frac {\log \left (d x + c\right )}{{\left (b x^{3} + a\right )} x^{2}} \,d x } \] Input:

integrate(log(d*x+c)/x^2/(b*x^3+a),x, algorithm="giac")
 

Output:

integrate(log(d*x + c)/((b*x^3 + a)*x^2), x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\log (c+d x)}{x^2 \left (a+b x^3\right )} \, dx=\int \frac {\ln \left (c+d\,x\right )}{x^2\,\left (b\,x^3+a\right )} \,d x \] Input:

int(log(c + d*x)/(x^2*(a + b*x^3)),x)
 

Output:

int(log(c + d*x)/(x^2*(a + b*x^3)), x)
 

Reduce [F]

\[ \int \frac {\log (c+d x)}{x^2 \left (a+b x^3\right )} \, dx=\int \frac {\mathrm {log}\left (d x +c \right )}{b \,x^{5}+a \,x^{2}}d x \] Input:

int(log(d*x+c)/x^2/(b*x^3+a),x)
 

Output:

int(log(c + d*x)/(a*x**2 + b*x**5),x)