\(\int \frac {\log ^2(c (d+e x^n)^p)}{x} \, dx\) [174]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 79 \[ \int \frac {\log ^2\left (c \left (d+e x^n\right )^p\right )}{x} \, dx=\frac {\log \left (-\frac {e x^n}{d}\right ) \log ^2\left (c \left (d+e x^n\right )^p\right )}{n}+\frac {2 p \log \left (c \left (d+e x^n\right )^p\right ) \operatorname {PolyLog}\left (2,1+\frac {e x^n}{d}\right )}{n}-\frac {2 p^2 \operatorname {PolyLog}\left (3,1+\frac {e x^n}{d}\right )}{n} \] Output:

ln(-e*x^n/d)*ln(c*(d+e*x^n)^p)^2/n+2*p*ln(c*(d+e*x^n)^p)*polylog(2,1+e*x^n 
/d)/n-2*p^2*polylog(3,1+e*x^n/d)/n
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(164\) vs. \(2(79)=158\).

Time = 0.06 (sec) , antiderivative size = 164, normalized size of antiderivative = 2.08 \[ \int \frac {\log ^2\left (c \left (d+e x^n\right )^p\right )}{x} \, dx=\log (x) \left (-p \log \left (d+e x^n\right )+\log \left (c \left (d+e x^n\right )^p\right )\right )^2+2 p \left (-p \log \left (d+e x^n\right )+\log \left (c \left (d+e x^n\right )^p\right )\right ) \left (\log (x) \left (\log \left (d+e x^n\right )-\log \left (1+\frac {e x^n}{d}\right )\right )-\frac {\operatorname {PolyLog}\left (2,-\frac {e x^n}{d}\right )}{n}\right )+\frac {p^2 \left (\log \left (-\frac {e x^n}{d}\right ) \log ^2\left (d+e x^n\right )+2 \log \left (d+e x^n\right ) \operatorname {PolyLog}\left (2,1+\frac {e x^n}{d}\right )-2 \operatorname {PolyLog}\left (3,1+\frac {e x^n}{d}\right )\right )}{n} \] Input:

Integrate[Log[c*(d + e*x^n)^p]^2/x,x]
 

Output:

Log[x]*(-(p*Log[d + e*x^n]) + Log[c*(d + e*x^n)^p])^2 + 2*p*(-(p*Log[d + e 
*x^n]) + Log[c*(d + e*x^n)^p])*(Log[x]*(Log[d + e*x^n] - Log[1 + (e*x^n)/d 
]) - PolyLog[2, -((e*x^n)/d)]/n) + (p^2*(Log[-((e*x^n)/d)]*Log[d + e*x^n]^ 
2 + 2*Log[d + e*x^n]*PolyLog[2, 1 + (e*x^n)/d] - 2*PolyLog[3, 1 + (e*x^n)/ 
d]))/n
 

Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.96, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.278, Rules used = {2904, 2843, 2881, 2821, 7143}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\log ^2\left (c \left (d+e x^n\right )^p\right )}{x} \, dx\)

\(\Big \downarrow \) 2904

\(\displaystyle \frac {\int x^{-n} \log ^2\left (c \left (e x^n+d\right )^p\right )dx^n}{n}\)

\(\Big \downarrow \) 2843

\(\displaystyle \frac {\log \left (-\frac {e x^n}{d}\right ) \log ^2\left (c \left (d+e x^n\right )^p\right )-2 e p \int \frac {\log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (e x^n+d\right )^p\right )}{e x^n+d}dx^n}{n}\)

\(\Big \downarrow \) 2881

\(\displaystyle \frac {\log \left (-\frac {e x^n}{d}\right ) \log ^2\left (c \left (d+e x^n\right )^p\right )-2 p \int x^{-n} \log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (e x^n+d\right )^p\right )d\left (e x^n+d\right )}{n}\)

\(\Big \downarrow \) 2821

\(\displaystyle \frac {\log \left (-\frac {e x^n}{d}\right ) \log ^2\left (c \left (d+e x^n\right )^p\right )-2 p \left (p \int x^{-n} \operatorname {PolyLog}\left (2,\frac {e x^n+d}{d}\right )d\left (e x^n+d\right )-\operatorname {PolyLog}\left (2,\frac {e x^n+d}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )\right )}{n}\)

\(\Big \downarrow \) 7143

\(\displaystyle \frac {\log \left (-\frac {e x^n}{d}\right ) \log ^2\left (c \left (d+e x^n\right )^p\right )-2 p \left (p \operatorname {PolyLog}\left (3,\frac {e x^n+d}{d}\right )-\operatorname {PolyLog}\left (2,\frac {e x^n+d}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )\right )}{n}\)

Input:

Int[Log[c*(d + e*x^n)^p]^2/x,x]
 

Output:

(Log[-((e*x^n)/d)]*Log[c*(d + e*x^n)^p]^2 - 2*p*(-(Log[c*(d + e*x^n)^p]*Po 
lyLog[2, (d + e*x^n)/d]) + p*PolyLog[3, (d + e*x^n)/d]))/n
 

Defintions of rubi rules used

rule 2821
Int[(Log[(d_.)*((e_) + (f_.)*(x_)^(m_.))]*((a_.) + Log[(c_.)*(x_)^(n_.)]*(b 
_.))^(p_.))/(x_), x_Symbol] :> Simp[(-PolyLog[2, (-d)*f*x^m])*((a + b*Log[c 
*x^n])^p/m), x] + Simp[b*n*(p/m)   Int[PolyLog[2, (-d)*f*x^m]*((a + b*Log[c 
*x^n])^(p - 1)/x), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[p, 
0] && EqQ[d*e, 1]
 

rule 2843
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)/((f_.) + (g_. 
)*(x_)), x_Symbol] :> Simp[Log[e*((f + g*x)/(e*f - d*g))]*((a + b*Log[c*(d 
+ e*x)^n])^p/g), x] - Simp[b*e*n*(p/g)   Int[Log[(e*(f + g*x))/(e*f - d*g)] 
*((a + b*Log[c*(d + e*x)^n])^(p - 1)/(d + e*x)), x], x] /; FreeQ[{a, b, c, 
d, e, f, g, n, p}, x] && NeQ[e*f - d*g, 0] && IGtQ[p, 1]
 

rule 2881
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + Log 
[(h_.)*((i_.) + (j_.)*(x_))^(m_.)]*(g_.))*((k_.) + (l_.)*(x_))^(r_.), x_Sym 
bol] :> Simp[1/e   Subst[Int[(k*(x/d))^r*(a + b*Log[c*x^n])^p*(f + g*Log[h* 
((e*i - d*j)/e + j*(x/e))^m]), x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, 
 f, g, h, i, j, k, l, n, p, r}, x] && EqQ[e*k - d*l, 0]
 

rule 2904
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m 
_.), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*L 
og[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p, q}, 
 x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) & 
&  !(EqQ[q, 1] && ILtQ[n, 0] && IGtQ[m, 0])
 

rule 7143
Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_S 
ymbol] :> Simp[PolyLog[n + 1, c*(a + b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d 
, e, n, p}, x] && EqQ[b*d, a*e]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 4.16 (sec) , antiderivative size = 578, normalized size of antiderivative = 7.32

method result size
risch \(\frac {\ln \left (1-\frac {d +e \,x^{n}}{d}\right ) \ln \left (d +e \,x^{n}\right )^{2} p^{2}}{n}-\frac {2 \ln \left (-\frac {e \,x^{n}}{d}\right ) \ln \left (d +e \,x^{n}\right )^{2} p^{2}}{n}+\frac {\ln \left (e \,x^{n}\right ) \ln \left (d +e \,x^{n}\right )^{2} p^{2}}{n}+\frac {2 \operatorname {polylog}\left (2, \frac {d +e \,x^{n}}{d}\right ) \ln \left (d +e \,x^{n}\right ) p^{2}}{n}-\frac {2 \operatorname {dilog}\left (-\frac {e \,x^{n}}{d}\right ) \ln \left (d +e \,x^{n}\right ) p^{2}}{n}+\frac {2 \ln \left (-\frac {e \,x^{n}}{d}\right ) \ln \left (\left (d +e \,x^{n}\right )^{p}\right ) \ln \left (d +e \,x^{n}\right ) p}{n}-\frac {2 \ln \left (e \,x^{n}\right ) \ln \left (\left (d +e \,x^{n}\right )^{p}\right ) \ln \left (d +e \,x^{n}\right ) p}{n}-\frac {2 \operatorname {polylog}\left (3, \frac {d +e \,x^{n}}{d}\right ) p^{2}}{n}+\frac {2 \operatorname {dilog}\left (-\frac {e \,x^{n}}{d}\right ) \ln \left (\left (d +e \,x^{n}\right )^{p}\right ) p}{n}+\frac {\ln \left (e \,x^{n}\right ) {\ln \left (\left (d +e \,x^{n}\right )^{p}\right )}^{2}}{n}+\frac {\left (i \pi \,\operatorname {csgn}\left (i \left (d +e \,x^{n}\right )^{p}\right ) {\operatorname {csgn}\left (i c \left (d +e \,x^{n}\right )^{p}\right )}^{2}-i \pi \,\operatorname {csgn}\left (i \left (d +e \,x^{n}\right )^{p}\right ) \operatorname {csgn}\left (i c \left (d +e \,x^{n}\right )^{p}\right ) \operatorname {csgn}\left (i c \right )-i \pi {\operatorname {csgn}\left (i c \left (d +e \,x^{n}\right )^{p}\right )}^{3}+i \pi {\operatorname {csgn}\left (i c \left (d +e \,x^{n}\right )^{p}\right )}^{2} \operatorname {csgn}\left (i c \right )+2 \ln \left (c \right )\right ) \left (\ln \left (x^{n}\right ) \ln \left (\left (d +e \,x^{n}\right )^{p}\right )-e p \left (\frac {\operatorname {dilog}\left (\frac {d +e \,x^{n}}{d}\right )}{e}+\frac {\ln \left (x^{n}\right ) \ln \left (\frac {d +e \,x^{n}}{d}\right )}{e}\right )\right )}{n}+\frac {{\left (i \pi \,\operatorname {csgn}\left (i \left (d +e \,x^{n}\right )^{p}\right ) {\operatorname {csgn}\left (i c \left (d +e \,x^{n}\right )^{p}\right )}^{2}-i \pi \,\operatorname {csgn}\left (i \left (d +e \,x^{n}\right )^{p}\right ) \operatorname {csgn}\left (i c \left (d +e \,x^{n}\right )^{p}\right ) \operatorname {csgn}\left (i c \right )-i \pi {\operatorname {csgn}\left (i c \left (d +e \,x^{n}\right )^{p}\right )}^{3}+i \pi {\operatorname {csgn}\left (i c \left (d +e \,x^{n}\right )^{p}\right )}^{2} \operatorname {csgn}\left (i c \right )+2 \ln \left (c \right )\right )}^{2} \ln \left (x \right )}{4}\) \(578\)

Input:

int(ln(c*(d+e*x^n)^p)^2/x,x,method=_RETURNVERBOSE)
 

Output:

1/n*ln(1-(d+e*x^n)/d)*ln(d+e*x^n)^2*p^2-2/n*ln(-e*x^n/d)*ln(d+e*x^n)^2*p^2 
+1/n*ln(e*x^n)*ln(d+e*x^n)^2*p^2+2/n*polylog(2,(d+e*x^n)/d)*ln(d+e*x^n)*p^ 
2-2/n*dilog(-e*x^n/d)*ln(d+e*x^n)*p^2+2/n*ln(-e*x^n/d)*ln((d+e*x^n)^p)*ln( 
d+e*x^n)*p-2/n*ln(e*x^n)*ln((d+e*x^n)^p)*ln(d+e*x^n)*p-2/n*polylog(3,(d+e* 
x^n)/d)*p^2+2/n*dilog(-e*x^n/d)*ln((d+e*x^n)^p)*p+1/n*ln(e*x^n)*ln((d+e*x^ 
n)^p)^2+(I*Pi*csgn(I*(d+e*x^n)^p)*csgn(I*c*(d+e*x^n)^p)^2-I*Pi*csgn(I*(d+e 
*x^n)^p)*csgn(I*c*(d+e*x^n)^p)*csgn(I*c)-I*Pi*csgn(I*c*(d+e*x^n)^p)^3+I*Pi 
*csgn(I*c*(d+e*x^n)^p)^2*csgn(I*c)+2*ln(c))/n*(ln(x^n)*ln((d+e*x^n)^p)-e*p 
*(dilog((d+e*x^n)/d)/e+ln(x^n)*ln((d+e*x^n)/d)/e))+1/4*(I*Pi*csgn(I*(d+e*x 
^n)^p)*csgn(I*c*(d+e*x^n)^p)^2-I*Pi*csgn(I*(d+e*x^n)^p)*csgn(I*c*(d+e*x^n) 
^p)*csgn(I*c)-I*Pi*csgn(I*c*(d+e*x^n)^p)^3+I*Pi*csgn(I*c*(d+e*x^n)^p)^2*cs 
gn(I*c)+2*ln(c))^2*ln(x)
 

Fricas [F]

\[ \int \frac {\log ^2\left (c \left (d+e x^n\right )^p\right )}{x} \, dx=\int { \frac {\log \left ({\left (e x^{n} + d\right )}^{p} c\right )^{2}}{x} \,d x } \] Input:

integrate(log(c*(d+e*x^n)^p)^2/x,x, algorithm="fricas")
 

Output:

integral(log((e*x^n + d)^p*c)^2/x, x)
 

Sympy [F]

\[ \int \frac {\log ^2\left (c \left (d+e x^n\right )^p\right )}{x} \, dx=\int \frac {\log {\left (c \left (d + e x^{n}\right )^{p} \right )}^{2}}{x}\, dx \] Input:

integrate(ln(c*(d+e*x**n)**p)**2/x,x)
 

Output:

Integral(log(c*(d + e*x**n)**p)**2/x, x)
 

Maxima [F]

\[ \int \frac {\log ^2\left (c \left (d+e x^n\right )^p\right )}{x} \, dx=\int { \frac {\log \left ({\left (e x^{n} + d\right )}^{p} c\right )^{2}}{x} \,d x } \] Input:

integrate(log(c*(d+e*x^n)^p)^2/x,x, algorithm="maxima")
 

Output:

log((e*x^n + d)^p)^2*log(x) - integrate(-(e*x^n*log(c)^2 + d*log(c)^2 - 2* 
((e*n*p*log(x) - e*log(c))*x^n - d*log(c))*log((e*x^n + d)^p))/(e*x*x^n + 
d*x), x)
 

Giac [F]

\[ \int \frac {\log ^2\left (c \left (d+e x^n\right )^p\right )}{x} \, dx=\int { \frac {\log \left ({\left (e x^{n} + d\right )}^{p} c\right )^{2}}{x} \,d x } \] Input:

integrate(log(c*(d+e*x^n)^p)^2/x,x, algorithm="giac")
 

Output:

integrate(log((e*x^n + d)^p*c)^2/x, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\log ^2\left (c \left (d+e x^n\right )^p\right )}{x} \, dx=\int \frac {{\ln \left (c\,{\left (d+e\,x^n\right )}^p\right )}^2}{x} \,d x \] Input:

int(log(c*(d + e*x^n)^p)^2/x,x)
 

Output:

int(log(c*(d + e*x^n)^p)^2/x, x)
 

Reduce [F]

\[ \int \frac {\log ^2\left (c \left (d+e x^n\right )^p\right )}{x} \, dx=\frac {3 \left (\int \frac {{\mathrm {log}\left (\left (x^{n} e +d \right )^{p} c \right )}^{2}}{x^{n} e x +d x}d x \right ) d n p +{\mathrm {log}\left (\left (x^{n} e +d \right )^{p} c \right )}^{3}}{3 n p} \] Input:

int(log(c*(d+e*x^n)^p)^2/x,x)
 

Output:

(3*int(log((x**n*e + d)**p*c)**2/(x**n*e*x + d*x),x)*d*n*p + log((x**n*e + 
 d)**p*c)**3)/(3*n*p)