\(\int (f+g x^3)^2 \log ^2(c (d+e x^2)^p) \, dx\) [294]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F]
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 835 \[ \int \left (f+g x^3\right )^2 \log ^2\left (c \left (d+e x^2\right )^p\right ) \, dx =\text {Too large to display} \] Output:

1408/735*d^(7/2)*g^2*p^2*arctan(e^(1/2)*x/d^(1/2))/e^(7/2)+4/35*d*g^2*p*x^ 
5*ln(c*(e*x^2+d)^p)/e-1/2*f*g*p*(e*x^2+d)^2*ln(c*(e*x^2+d)^p)/e^2-2*d*f*g* 
p^2*x^2/e+4/7*d^3*g^2*p*x*ln(c*(e*x^2+d)^p)/e^3-4/21*d^2*g^2*p*x^3*ln(c*(e 
*x^2+d)^p)/e^2+f^2*x*ln(c*(e*x^2+d)^p)^2-1408/735*d^3*g^2*p^2*x/e^3+568/22 
05*d^2*g^2*p^2*x^3/e^2-96/1225*d*g^2*p^2*x^5/e+1/4*f*g*p^2*(e*x^2+d)^2/e^2 
+1/2*f*g*(e*x^2+d)^2*ln(c*(e*x^2+d)^p)^2/e^2-d*f*g*(e*x^2+d)*ln(c*(e*x^2+d 
)^p)^2/e^2+4*I*d^(1/2)*f^2*p^2*arctan(e^(1/2)*x/d^(1/2))^2/e^(1/2)+8*d^(1/ 
2)*f^2*p^2*arctan(e^(1/2)*x/d^(1/2))*ln(2*d^(1/2)/(d^(1/2)+I*e^(1/2)*x))/e 
^(1/2)+4*d^(1/2)*f^2*p*arctan(e^(1/2)*x/d^(1/2))*ln(c*(e*x^2+d)^p)/e^(1/2) 
-4/7*d^(7/2)*g^2*p*arctan(e^(1/2)*x/d^(1/2))*ln(c*(e*x^2+d)^p)/e^(7/2)-8/7 
*d^(7/2)*g^2*p^2*arctan(e^(1/2)*x/d^(1/2))*ln(2*d^(1/2)/(d^(1/2)+I*e^(1/2) 
*x))/e^(7/2)-4/7*I*d^(7/2)*g^2*p^2*polylog(2,1-2*d^(1/2)/(d^(1/2)+I*e^(1/2 
)*x))/e^(7/2)-4/7*I*d^(7/2)*g^2*p^2*arctan(e^(1/2)*x/d^(1/2))^2/e^(7/2)-4/ 
49*g^2*p*x^7*ln(c*(e*x^2+d)^p)+2*d*f*g*p*(e*x^2+d)*ln(c*(e*x^2+d)^p)/e^2-8 
*d^(1/2)*f^2*p^2*arctan(e^(1/2)*x/d^(1/2))/e^(1/2)+1/7*g^2*x^7*ln(c*(e*x^2 
+d)^p)^2+8/343*g^2*p^2*x^7+8*f^2*p^2*x+4*I*d^(1/2)*f^2*p^2*polylog(2,1-2*d 
^(1/2)/(d^(1/2)+I*e^(1/2)*x))/e^(1/2)-4*f^2*p*x*ln(c*(e*x^2+d)^p)
 

Mathematica [A] (verified)

Time = 0.62 (sec) , antiderivative size = 475, normalized size of antiderivative = 0.57 \[ \int \left (f+g x^3\right )^2 \log ^2\left (c \left (d+e x^2\right )^p\right ) \, dx=\frac {-176400 i \sqrt {d} \left (-7 e^3 f^2+d^3 g^2\right ) p^2 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2-1680 \sqrt {d} p \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (2 \left (735 e^3 f^2-176 d^3 g^2\right ) p-210 \left (7 e^3 f^2-d^3 g^2\right ) p \log \left (\frac {2 \sqrt {d}}{\sqrt {d}+i \sqrt {e} x}\right )-105 \left (7 e^3 f^2-d^3 g^2\right ) \log \left (c \left (d+e x^2\right )^p\right )\right )+\sqrt {e} \left (p^2 x \left (-591360 d^3 g^2+79520 d^2 e g^2 x^2-378 d e^2 g x \left (1225 f+64 g x^3\right )+225 e^3 \left (10976 f^2+343 f g x^3+32 g^2 x^6\right )\right )+154350 d^2 e f g p^2 \log \left (d+e x^2\right )-210 p \left (-840 d^3 g^2 x+70 d^2 e g \left (-21 f+4 g x^3\right )-42 d e^2 g x^2 \left (35 f+4 g x^3\right )+15 e^3 x \left (392 f^2+49 f g x^3+8 g^2 x^6\right )\right ) \log \left (c \left (d+e x^2\right )^p\right )+22050 \left (-7 d^2 e f g+e^3 x \left (14 f^2+7 f g x^3+2 g^2 x^6\right )\right ) \log ^2\left (c \left (d+e x^2\right )^p\right )\right )-176400 i \sqrt {d} \left (-7 e^3 f^2+d^3 g^2\right ) p^2 \operatorname {PolyLog}\left (2,\frac {i \sqrt {d}+\sqrt {e} x}{-i \sqrt {d}+\sqrt {e} x}\right )}{308700 e^{7/2}} \] Input:

Integrate[(f + g*x^3)^2*Log[c*(d + e*x^2)^p]^2,x]
 

Output:

((-176400*I)*Sqrt[d]*(-7*e^3*f^2 + d^3*g^2)*p^2*ArcTan[(Sqrt[e]*x)/Sqrt[d] 
]^2 - 1680*Sqrt[d]*p*ArcTan[(Sqrt[e]*x)/Sqrt[d]]*(2*(735*e^3*f^2 - 176*d^3 
*g^2)*p - 210*(7*e^3*f^2 - d^3*g^2)*p*Log[(2*Sqrt[d])/(Sqrt[d] + I*Sqrt[e] 
*x)] - 105*(7*e^3*f^2 - d^3*g^2)*Log[c*(d + e*x^2)^p]) + Sqrt[e]*(p^2*x*(- 
591360*d^3*g^2 + 79520*d^2*e*g^2*x^2 - 378*d*e^2*g*x*(1225*f + 64*g*x^3) + 
 225*e^3*(10976*f^2 + 343*f*g*x^3 + 32*g^2*x^6)) + 154350*d^2*e*f*g*p^2*Lo 
g[d + e*x^2] - 210*p*(-840*d^3*g^2*x + 70*d^2*e*g*(-21*f + 4*g*x^3) - 42*d 
*e^2*g*x^2*(35*f + 4*g*x^3) + 15*e^3*x*(392*f^2 + 49*f*g*x^3 + 8*g^2*x^6)) 
*Log[c*(d + e*x^2)^p] + 22050*(-7*d^2*e*f*g + e^3*x*(14*f^2 + 7*f*g*x^3 + 
2*g^2*x^6))*Log[c*(d + e*x^2)^p]^2) - (176400*I)*Sqrt[d]*(-7*e^3*f^2 + d^3 
*g^2)*p^2*PolyLog[2, (I*Sqrt[d] + Sqrt[e]*x)/((-I)*Sqrt[d] + Sqrt[e]*x)])/ 
(308700*e^(7/2))
 

Rubi [A] (verified)

Time = 2.28 (sec) , antiderivative size = 835, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {2921, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (f+g x^3\right )^2 \log ^2\left (c \left (d+e x^2\right )^p\right ) \, dx\)

\(\Big \downarrow \) 2921

\(\displaystyle \int \left (f^2 \log ^2\left (c \left (d+e x^2\right )^p\right )+2 f g x^3 \log ^2\left (c \left (d+e x^2\right )^p\right )+g^2 x^6 \log ^2\left (c \left (d+e x^2\right )^p\right )\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {8}{343} g^2 p^2 x^7+\frac {1}{7} g^2 \log ^2\left (c \left (e x^2+d\right )^p\right ) x^7-\frac {4}{49} g^2 p \log \left (c \left (e x^2+d\right )^p\right ) x^7-\frac {96 d g^2 p^2 x^5}{1225 e}+\frac {4 d g^2 p \log \left (c \left (e x^2+d\right )^p\right ) x^5}{35 e}+\frac {568 d^2 g^2 p^2 x^3}{2205 e^2}-\frac {4 d^2 g^2 p \log \left (c \left (e x^2+d\right )^p\right ) x^3}{21 e^2}-\frac {2 d f g p^2 x^2}{e}+8 f^2 p^2 x-\frac {1408 d^3 g^2 p^2 x}{735 e^3}+f^2 \log ^2\left (c \left (e x^2+d\right )^p\right ) x-4 f^2 p \log \left (c \left (e x^2+d\right )^p\right ) x+\frac {4 d^3 g^2 p \log \left (c \left (e x^2+d\right )^p\right ) x}{7 e^3}+\frac {f g p^2 \left (e x^2+d\right )^2}{4 e^2}+\frac {4 i \sqrt {d} f^2 p^2 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{\sqrt {e}}-\frac {4 i d^{7/2} g^2 p^2 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{7 e^{7/2}}+\frac {f g \left (e x^2+d\right )^2 \log ^2\left (c \left (e x^2+d\right )^p\right )}{2 e^2}-\frac {d f g \left (e x^2+d\right ) \log ^2\left (c \left (e x^2+d\right )^p\right )}{e^2}-\frac {8 \sqrt {d} f^2 p^2 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {e}}+\frac {1408 d^{7/2} g^2 p^2 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{735 e^{7/2}}+\frac {8 \sqrt {d} f^2 p^2 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{i \sqrt {e} x+\sqrt {d}}\right )}{\sqrt {e}}-\frac {8 d^{7/2} g^2 p^2 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{i \sqrt {e} x+\sqrt {d}}\right )}{7 e^{7/2}}-\frac {f g p \left (e x^2+d\right )^2 \log \left (c \left (e x^2+d\right )^p\right )}{2 e^2}+\frac {2 d f g p \left (e x^2+d\right ) \log \left (c \left (e x^2+d\right )^p\right )}{e^2}+\frac {4 \sqrt {d} f^2 p \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (c \left (e x^2+d\right )^p\right )}{\sqrt {e}}-\frac {4 d^{7/2} g^2 p \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (c \left (e x^2+d\right )^p\right )}{7 e^{7/2}}+\frac {4 i \sqrt {d} f^2 p^2 \operatorname {PolyLog}\left (2,1-\frac {2 \sqrt {d}}{i \sqrt {e} x+\sqrt {d}}\right )}{\sqrt {e}}-\frac {4 i d^{7/2} g^2 p^2 \operatorname {PolyLog}\left (2,1-\frac {2 \sqrt {d}}{i \sqrt {e} x+\sqrt {d}}\right )}{7 e^{7/2}}\)

Input:

Int[(f + g*x^3)^2*Log[c*(d + e*x^2)^p]^2,x]
 

Output:

8*f^2*p^2*x - (1408*d^3*g^2*p^2*x)/(735*e^3) - (2*d*f*g*p^2*x^2)/e + (568* 
d^2*g^2*p^2*x^3)/(2205*e^2) - (96*d*g^2*p^2*x^5)/(1225*e) + (8*g^2*p^2*x^7 
)/343 + (f*g*p^2*(d + e*x^2)^2)/(4*e^2) - (8*Sqrt[d]*f^2*p^2*ArcTan[(Sqrt[ 
e]*x)/Sqrt[d]])/Sqrt[e] + (1408*d^(7/2)*g^2*p^2*ArcTan[(Sqrt[e]*x)/Sqrt[d] 
])/(735*e^(7/2)) + ((4*I)*Sqrt[d]*f^2*p^2*ArcTan[(Sqrt[e]*x)/Sqrt[d]]^2)/S 
qrt[e] - (((4*I)/7)*d^(7/2)*g^2*p^2*ArcTan[(Sqrt[e]*x)/Sqrt[d]]^2)/e^(7/2) 
 + (8*Sqrt[d]*f^2*p^2*ArcTan[(Sqrt[e]*x)/Sqrt[d]]*Log[(2*Sqrt[d])/(Sqrt[d] 
 + I*Sqrt[e]*x)])/Sqrt[e] - (8*d^(7/2)*g^2*p^2*ArcTan[(Sqrt[e]*x)/Sqrt[d]] 
*Log[(2*Sqrt[d])/(Sqrt[d] + I*Sqrt[e]*x)])/(7*e^(7/2)) - 4*f^2*p*x*Log[c*( 
d + e*x^2)^p] + (4*d^3*g^2*p*x*Log[c*(d + e*x^2)^p])/(7*e^3) - (4*d^2*g^2* 
p*x^3*Log[c*(d + e*x^2)^p])/(21*e^2) + (4*d*g^2*p*x^5*Log[c*(d + e*x^2)^p] 
)/(35*e) - (4*g^2*p*x^7*Log[c*(d + e*x^2)^p])/49 + (2*d*f*g*p*(d + e*x^2)* 
Log[c*(d + e*x^2)^p])/e^2 - (f*g*p*(d + e*x^2)^2*Log[c*(d + e*x^2)^p])/(2* 
e^2) + (4*Sqrt[d]*f^2*p*ArcTan[(Sqrt[e]*x)/Sqrt[d]]*Log[c*(d + e*x^2)^p])/ 
Sqrt[e] - (4*d^(7/2)*g^2*p*ArcTan[(Sqrt[e]*x)/Sqrt[d]]*Log[c*(d + e*x^2)^p 
])/(7*e^(7/2)) + f^2*x*Log[c*(d + e*x^2)^p]^2 + (g^2*x^7*Log[c*(d + e*x^2) 
^p]^2)/7 - (d*f*g*(d + e*x^2)*Log[c*(d + e*x^2)^p]^2)/e^2 + (f*g*(d + e*x^ 
2)^2*Log[c*(d + e*x^2)^p]^2)/(2*e^2) + ((4*I)*Sqrt[d]*f^2*p^2*PolyLog[2, 1 
 - (2*Sqrt[d])/(Sqrt[d] + I*Sqrt[e]*x)])/Sqrt[e] - (((4*I)/7)*d^(7/2)*g^2* 
p^2*PolyLog[2, 1 - (2*Sqrt[d])/(Sqrt[d] + I*Sqrt[e]*x)])/e^(7/2)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2921
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*((f_) + 
 (g_.)*(x_)^(s_))^(r_.), x_Symbol] :> With[{t = ExpandIntegrand[(a + b*Log[ 
c*(d + e*x^n)^p])^q, (f + g*x^s)^r, x]}, Int[t, x] /; SumQ[t]] /; FreeQ[{a, 
 b, c, d, e, f, g, n, p, q, r, s}, x] && IntegerQ[n] && IGtQ[q, 0] && Integ 
erQ[r] && IntegerQ[s] && (EqQ[q, 1] || (GtQ[r, 0] && GtQ[s, 1]) || (LtQ[s, 
0] && LtQ[r, 0]))
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 7.05 (sec) , antiderivative size = 1127, normalized size of antiderivative = 1.35

method result size
risch \(\text {Expression too large to display}\) \(1127\)

Input:

int((g*x^3+f)^2*ln(c*(e*x^2+d)^p)^2,x,method=_RETURNVERBOSE)
 

Output:

-3/2*d*f*g*p^2*x^2/e-4/49*p*g^2*x^7*ln((e*x^2+d)^p)+1/4*p^2*g*f*x^4-1/2*p* 
f*g*x^4*ln((e*x^2+d)^p)-8*p^2*d/(d*e)^(1/2)*arctan(x*e/(d*e)^(1/2))*f^2-4* 
p*f^2*x*ln((e*x^2+d)^p)+1/2*ln((e*x^2+d)^p)^2*g*f*x^4+(I*Pi*csgn(I*(e*x^2+ 
d)^p)*csgn(I*c*(e*x^2+d)^p)^2-I*Pi*csgn(I*(e*x^2+d)^p)*csgn(I*c*(e*x^2+d)^ 
p)*csgn(I*c)-I*Pi*csgn(I*c*(e*x^2+d)^p)^3+I*Pi*csgn(I*c*(e*x^2+d)^p)^2*csg 
n(I*c)+2*ln(c))*(1/7*ln((e*x^2+d)^p)*g^2*x^7+1/2*ln((e*x^2+d)^p)*g*f*x^4+l 
n((e*x^2+d)^p)*x*f^2-1/7*e*p*(1/e^4*(2/7*e^3*g^2*x^7-2/5*d*e^2*g^2*x^5+7/4 
*e^3*f*g*x^4+2/3*d^2*e*g^2*x^3-7/2*d*f*g*x^2*e^2-2*d^3*x*g^2+14*x*e^3*f^2) 
+1/e^4*d*(7/2*d*e*f*g*ln(e*x^2+d)+(2*d^3*g^2-14*e^3*f^2)/(d*e)^(1/2)*arcta 
n(x*e/(d*e)^(1/2)))))+1/4*(I*Pi*csgn(I*(e*x^2+d)^p)*csgn(I*c*(e*x^2+d)^p)^ 
2-I*Pi*csgn(I*(e*x^2+d)^p)*csgn(I*c*(e*x^2+d)^p)*csgn(I*c)-I*Pi*csgn(I*c*( 
e*x^2+d)^p)^3+I*Pi*csgn(I*c*(e*x^2+d)^p)^2*csgn(I*c)+2*ln(c))^2*(1/7*g^2*x 
^7+1/2*f*g*x^4+f^2*x)+3/2/e^2*p^2*d^2*f*g*ln(e*x^2+d)+1408/735/e^3*p^2*g^2 
*d^4/(d*e)^(1/2)*arctan(x*e/(d*e)^(1/2))+4/35/e*p*d*g^2*x^5*ln((e*x^2+d)^p 
)-4/21/e^2*p*d^2*g^2*x^3*ln((e*x^2+d)^p)+4/7/e^3*p*d^3*x*g^2*ln((e*x^2+d)^ 
p)+1/e^2*p^2*d^2*f*g*ln(e*x^2+d)^2+4*p*d/(d*e)^(1/2)*arctan(x*e/(d*e)^(1/2 
))*f^2*ln((e*x^2+d)^p)-4*p^2*d/(d*e)^(1/2)*arctan(x*e/(d*e)^(1/2))*f^2*ln( 
e*x^2+d)+1/e*p*d*f*g*x^2*ln((e*x^2+d)^p)-1/e^2*p*d^2*f*g*ln(e*x^2+d)*ln((e 
*x^2+d)^p)-4/7/e^3*p*d^4/(d*e)^(1/2)*arctan(x*e/(d*e)^(1/2))*g^2*ln((e*x^2 
+d)^p)+4/7/e^3*p^2*d^4/(d*e)^(1/2)*arctan(x*e/(d*e)^(1/2))*g^2*ln(e*x^2...
 

Fricas [F]

\[ \int \left (f+g x^3\right )^2 \log ^2\left (c \left (d+e x^2\right )^p\right ) \, dx=\int { {\left (g x^{3} + f\right )}^{2} \log \left ({\left (e x^{2} + d\right )}^{p} c\right )^{2} \,d x } \] Input:

integrate((g*x^3+f)^2*log(c*(e*x^2+d)^p)^2,x, algorithm="fricas")
 

Output:

integral((g^2*x^6 + 2*f*g*x^3 + f^2)*log((e*x^2 + d)^p*c)^2, x)
 

Sympy [F]

\[ \int \left (f+g x^3\right )^2 \log ^2\left (c \left (d+e x^2\right )^p\right ) \, dx=\int \left (f + g x^{3}\right )^{2} \log {\left (c \left (d + e x^{2}\right )^{p} \right )}^{2}\, dx \] Input:

integrate((g*x**3+f)**2*ln(c*(e*x**2+d)**p)**2,x)
 

Output:

Integral((f + g*x**3)**2*log(c*(d + e*x**2)**p)**2, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \left (f+g x^3\right )^2 \log ^2\left (c \left (d+e x^2\right )^p\right ) \, dx=\text {Exception raised: ValueError} \] Input:

integrate((g*x^3+f)^2*log(c*(e*x^2+d)^p)^2,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F]

\[ \int \left (f+g x^3\right )^2 \log ^2\left (c \left (d+e x^2\right )^p\right ) \, dx=\int { {\left (g x^{3} + f\right )}^{2} \log \left ({\left (e x^{2} + d\right )}^{p} c\right )^{2} \,d x } \] Input:

integrate((g*x^3+f)^2*log(c*(e*x^2+d)^p)^2,x, algorithm="giac")
 

Output:

integrate((g*x^3 + f)^2*log((e*x^2 + d)^p*c)^2, x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \left (f+g x^3\right )^2 \log ^2\left (c \left (d+e x^2\right )^p\right ) \, dx=\int {\ln \left (c\,{\left (e\,x^2+d\right )}^p\right )}^2\,{\left (g\,x^3+f\right )}^2 \,d x \] Input:

int(log(c*(d + e*x^2)^p)^2*(f + g*x^3)^2,x)
 

Output:

int(log(c*(d + e*x^2)^p)^2*(f + g*x^3)^2, x)
 

Reduce [F]

\[ \int \left (f+g x^3\right )^2 \log ^2\left (c \left (d+e x^2\right )^p\right ) \, dx=\frac {591360 \sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) d^{3} g^{2} p^{2}-2469600 \sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) e^{3} f^{2} p^{2}-176400 \left (\int \frac {\mathrm {log}\left (\left (e \,x^{2}+d \right )^{p} c \right )}{e \,x^{2}+d}d x \right ) d^{4} e \,g^{2} p +1234800 \left (\int \frac {\mathrm {log}\left (\left (e \,x^{2}+d \right )^{p} c \right )}{e \,x^{2}+d}d x \right ) d \,e^{4} f^{2} p -154350 {\mathrm {log}\left (\left (e \,x^{2}+d \right )^{p} c \right )}^{2} d^{2} e^{2} f g +308700 {\mathrm {log}\left (\left (e \,x^{2}+d \right )^{p} c \right )}^{2} e^{4} f^{2} x +154350 {\mathrm {log}\left (\left (e \,x^{2}+d \right )^{p} c \right )}^{2} e^{4} f g \,x^{4}+44100 {\mathrm {log}\left (\left (e \,x^{2}+d \right )^{p} c \right )}^{2} e^{4} g^{2} x^{7}+176400 \,\mathrm {log}\left (\left (e \,x^{2}+d \right )^{p} c \right ) d^{3} e \,g^{2} p x +463050 \,\mathrm {log}\left (\left (e \,x^{2}+d \right )^{p} c \right ) d^{2} e^{2} f g p -58800 \,\mathrm {log}\left (\left (e \,x^{2}+d \right )^{p} c \right ) d^{2} e^{2} g^{2} p \,x^{3}+308700 \,\mathrm {log}\left (\left (e \,x^{2}+d \right )^{p} c \right ) d \,e^{3} f g p \,x^{2}+35280 \,\mathrm {log}\left (\left (e \,x^{2}+d \right )^{p} c \right ) d \,e^{3} g^{2} p \,x^{5}-1234800 \,\mathrm {log}\left (\left (e \,x^{2}+d \right )^{p} c \right ) e^{4} f^{2} p x -154350 \,\mathrm {log}\left (\left (e \,x^{2}+d \right )^{p} c \right ) e^{4} f g p \,x^{4}-25200 \,\mathrm {log}\left (\left (e \,x^{2}+d \right )^{p} c \right ) e^{4} g^{2} p \,x^{7}-591360 d^{3} e \,g^{2} p^{2} x +79520 d^{2} e^{2} g^{2} p^{2} x^{3}-463050 d \,e^{3} f g \,p^{2} x^{2}-24192 d \,e^{3} g^{2} p^{2} x^{5}+2469600 e^{4} f^{2} p^{2} x +77175 e^{4} f g \,p^{2} x^{4}+7200 e^{4} g^{2} p^{2} x^{7}}{308700 e^{4}} \] Input:

int((g*x^3+f)^2*log(c*(e*x^2+d)^p)^2,x)
 

Output:

(591360*sqrt(e)*sqrt(d)*atan((e*x)/(sqrt(e)*sqrt(d)))*d**3*g**2*p**2 - 246 
9600*sqrt(e)*sqrt(d)*atan((e*x)/(sqrt(e)*sqrt(d)))*e**3*f**2*p**2 - 176400 
*int(log((d + e*x**2)**p*c)/(d + e*x**2),x)*d**4*e*g**2*p + 1234800*int(lo 
g((d + e*x**2)**p*c)/(d + e*x**2),x)*d*e**4*f**2*p - 154350*log((d + e*x** 
2)**p*c)**2*d**2*e**2*f*g + 308700*log((d + e*x**2)**p*c)**2*e**4*f**2*x + 
 154350*log((d + e*x**2)**p*c)**2*e**4*f*g*x**4 + 44100*log((d + e*x**2)** 
p*c)**2*e**4*g**2*x**7 + 176400*log((d + e*x**2)**p*c)*d**3*e*g**2*p*x + 4 
63050*log((d + e*x**2)**p*c)*d**2*e**2*f*g*p - 58800*log((d + e*x**2)**p*c 
)*d**2*e**2*g**2*p*x**3 + 308700*log((d + e*x**2)**p*c)*d*e**3*f*g*p*x**2 
+ 35280*log((d + e*x**2)**p*c)*d*e**3*g**2*p*x**5 - 1234800*log((d + e*x** 
2)**p*c)*e**4*f**2*p*x - 154350*log((d + e*x**2)**p*c)*e**4*f*g*p*x**4 - 2 
5200*log((d + e*x**2)**p*c)*e**4*g**2*p*x**7 - 591360*d**3*e*g**2*p**2*x + 
 79520*d**2*e**2*g**2*p**2*x**3 - 463050*d*e**3*f*g*p**2*x**2 - 24192*d*e* 
*3*g**2*p**2*x**5 + 2469600*e**4*f**2*p**2*x + 77175*e**4*f*g*p**2*x**4 + 
7200*e**4*g**2*p**2*x**7)/(308700*e**4)