\(\int (f+g x^3)^2 \log ^3(c (d+e x^2)^p) \, dx\) [298]

Optimal result
Mathematica [B] (verified)
Rubi [N/A]
Maple [N/A]
Fricas [N/A]
Sympy [N/A]
Maxima [F(-2)]
Giac [N/A]
Mupad [N/A]
Reduce [N/A]

Optimal result

Integrand size = 24, antiderivative size = 24 \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx =\text {Too large to display} \] Output:

-351136/25725*d^(7/2)*g^2*p^3*arctan(e^(1/2)*x/d^(1/2))/e^(7/2)+48*d^(1/2) 
*f^2*p^3*arctan(e^(1/2)*x/d^(1/2))/e^(1/2)+6*d*f*g*p^3*x^2/e-1408/245*d^3* 
g^2*p^2*x*ln(c*(e*x^2+d)^p)/e^3+568/735*d^2*g^2*p^2*x^3*ln(c*(e*x^2+d)^p)/ 
e^2+351136/25725*d^3*g^2*p^3*x/e^3-55456/77175*d^2*g^2*p^3*x^3/e^2+5232/42 
875*d*g^2*p^3*x^5/e-3/8*f*g*p^3*(e*x^2+d)^2/e^2+1/2*f*g*(e*x^2+d)^2*ln(c*( 
e*x^2+d)^p)^3/e^2-6/7*d^4*g^2*p*Defer(Int)(ln(c*(e*x^2+d)^p)^2/(e*x^2+d),x 
)/e^3+2816/245*d^(7/2)*g^2*p^3*arctan(e^(1/2)*x/d^(1/2))*ln(2*d^(1/2)/(d^( 
1/2)+I*e^(1/2)*x))/e^(7/2)+1408/245*d^(7/2)*g^2*p^2*arctan(e^(1/2)*x/d^(1/ 
2))*ln(c*(e*x^2+d)^p)/e^(7/2)-48*d^(1/2)*f^2*p^3*arctan(e^(1/2)*x/d^(1/2)) 
*ln(2*d^(1/2)/(d^(1/2)+I*e^(1/2)*x))/e^(1/2)-24*d^(1/2)*f^2*p^2*arctan(e^( 
1/2)*x/d^(1/2))*ln(c*(e*x^2+d)^p)/e^(1/2)-24*I*d^(1/2)*f^2*p^3*polylog(2,1 
-2*d^(1/2)/(d^(1/2)+I*e^(1/2)*x))/e^(1/2)-24*I*d^(1/2)*f^2*p^3*arctan(e^(1 
/2)*x/d^(1/2))^2/e^(1/2)+1408/245*I*d^(7/2)*g^2*p^3*polylog(2,1-2*d^(1/2)/ 
(d^(1/2)+I*e^(1/2)*x))/e^(7/2)+1408/245*I*d^(7/2)*g^2*p^3*arctan(e^(1/2)*x 
/d^(1/2))^2/e^(7/2)+24*f^2*p^2*x*ln(c*(e*x^2+d)^p)+24/343*g^2*p^2*x^7*ln(c 
*(e*x^2+d)^p)-6*f^2*p*x*ln(c*(e*x^2+d)^p)^2-6/49*g^2*p*x^7*ln(c*(e*x^2+d)^ 
p)^2+6*d*f^2*p*Defer(Int)(ln(c*(e*x^2+d)^p)^2/(e*x^2+d),x)-288/1225*d*g^2* 
p^2*x^5*ln(c*(e*x^2+d)^p)/e+3/4*f*g*p^2*(e*x^2+d)^2*ln(c*(e*x^2+d)^p)/e^2+ 
6/7*d^3*g^2*p*x*ln(c*(e*x^2+d)^p)^2/e^3-2/7*d^2*g^2*p*x^3*ln(c*(e*x^2+d)^p 
)^2/e^2+6/35*d*g^2*p*x^5*ln(c*(e*x^2+d)^p)^2/e-3/4*f*g*p*(e*x^2+d)^2*ln...
 

Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(2385\) vs. \(2(1126)=2252\).

Time = 10.96 (sec) , antiderivative size = 2385, normalized size of antiderivative = 99.38 \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx=\text {Result too large to show} \] Input:

Integrate[(f + g*x^3)^2*Log[c*(d + e*x^2)^p]^3,x]
 

Output:

(f*g*p^3*(d + e*x^2)*(-8*d*(-6 + 6*Log[d + e*x^2] - 3*Log[d + e*x^2]^2 + L 
og[d + e*x^2]^3) + (d + e*x^2)*(-3 + 6*Log[d + e*x^2] - 6*Log[d + e*x^2]^2 
 + 4*Log[d + e*x^2]^3)))/(8*e^2) + 6*f*g*p^2*((x^4*Log[d + e*x^2]^2)/4 - e 
*((3*d*x^2)/(4*e^2) - x^4/(8*e) - (3*d^2*Log[d + e*x^2])/(4*e^3) - (d*x^2* 
Log[d + e*x^2])/(2*e^2) + (x^4*Log[d + e*x^2])/(4*e) + (d^2*Log[d + e*x^2] 
^2)/(4*e^3)))*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p]) + (3*d*f*g*p*x^ 
2*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2)/(2*e) - (2*d^2*g^2*p*x^3 
*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2)/(7*e^2) + (6*d*g^2*p*x^5* 
(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2)/(35*e) - (3*d^2*f*g*p*Log[ 
d + e*x^2]*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2)/(2*e^2) + (3*p* 
x*(14*f^2 + 7*f*g*x^3 + 2*g^2*x^6)*Log[d + e*x^2]*(-(p*Log[d + e*x^2]) + L 
og[c*(d + e*x^2)^p])^2)/14 + (f*g*x^4*(-(p*Log[d + e*x^2]) + Log[c*(d + e* 
x^2)^p])^2*(-3*p + 2*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])))/4 + (g 
^2*x^7*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2*(-6*p + 7*(-(p*Log[d 
 + e*x^2]) + Log[c*(d + e*x^2)^p])))/49 + (x*(-(p*Log[d + e*x^2]) + Log[c* 
(d + e*x^2)^p])^2*(-42*e^3*f^2*p + 6*d^3*g^2*p + 7*e^3*f^2*(-(p*Log[d + e* 
x^2]) + Log[c*(d + e*x^2)^p])))/(7*e^3) - (6*ArcTan[(Sqrt[e]*x)/Sqrt[d]]*( 
-7*d*e^3*f^2*p*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2 + d^4*g^2*p* 
(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2))/(7*Sqrt[d]*e^(7/2)) + 3*f 
^2*p^2*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])*(x*Log[d + e*x^2]^2...
 

Rubi [N/A]

Not integrable

Time = 4.24 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {2921, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx\)

\(\Big \downarrow \) 2921

\(\displaystyle \int \left (f^2 \log ^3\left (c \left (d+e x^2\right )^p\right )+2 f g x^3 \log ^3\left (c \left (d+e x^2\right )^p\right )+g^2 x^6 \log ^3\left (c \left (d+e x^2\right )^p\right )\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {48 g^2 p^3 x^7}{2401}+\frac {1}{7} g^2 \log ^3\left (c \left (e x^2+d\right )^p\right ) x^7-\frac {6}{49} g^2 p \log ^2\left (c \left (e x^2+d\right )^p\right ) x^7+\frac {24}{343} g^2 p^2 \log \left (c \left (e x^2+d\right )^p\right ) x^7+\frac {5232 d g^2 p^3 x^5}{42875 e}+\frac {6 d g^2 p \log ^2\left (c \left (e x^2+d\right )^p\right ) x^5}{35 e}-\frac {288 d g^2 p^2 \log \left (c \left (e x^2+d\right )^p\right ) x^5}{1225 e}-\frac {55456 d^2 g^2 p^3 x^3}{77175 e^2}-\frac {2 d^2 g^2 p \log ^2\left (c \left (e x^2+d\right )^p\right ) x^3}{7 e^2}+\frac {568 d^2 g^2 p^2 \log \left (c \left (e x^2+d\right )^p\right ) x^3}{735 e^2}+\frac {6 d f g p^3 x^2}{e}-48 f^2 p^3 x+\frac {351136 d^3 g^2 p^3 x}{25725 e^3}+f^2 \log ^3\left (c \left (e x^2+d\right )^p\right ) x-6 f^2 p \log ^2\left (c \left (e x^2+d\right )^p\right ) x+\frac {6 d^3 g^2 p \log ^2\left (c \left (e x^2+d\right )^p\right ) x}{7 e^3}+24 f^2 p^2 \log \left (c \left (e x^2+d\right )^p\right ) x-\frac {1408 d^3 g^2 p^2 \log \left (c \left (e x^2+d\right )^p\right ) x}{245 e^3}+\frac {f g \left (e x^2+d\right )^2 \log ^3\left (c \left (e x^2+d\right )^p\right )}{2 e^2}-\frac {d f g \left (e x^2+d\right ) \log ^3\left (c \left (e x^2+d\right )^p\right )}{e^2}-\frac {3 f g p^3 \left (e x^2+d\right )^2}{8 e^2}-\frac {24 i \sqrt {d} f^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{\sqrt {e}}+\frac {1408 i d^{7/2} g^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{245 e^{7/2}}-\frac {3 f g p \left (e x^2+d\right )^2 \log ^2\left (c \left (e x^2+d\right )^p\right )}{4 e^2}+\frac {3 d f g p \left (e x^2+d\right ) \log ^2\left (c \left (e x^2+d\right )^p\right )}{e^2}+\frac {48 \sqrt {d} f^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {e}}-\frac {351136 d^{7/2} g^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{25725 e^{7/2}}-\frac {48 \sqrt {d} f^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{i \sqrt {e} x+\sqrt {d}}\right )}{\sqrt {e}}+\frac {2816 d^{7/2} g^2 p^3 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{i \sqrt {e} x+\sqrt {d}}\right )}{245 e^{7/2}}+\frac {3 f g p^2 \left (e x^2+d\right )^2 \log \left (c \left (e x^2+d\right )^p\right )}{4 e^2}-\frac {6 d f g p^2 \left (e x^2+d\right ) \log \left (c \left (e x^2+d\right )^p\right )}{e^2}-\frac {24 \sqrt {d} f^2 p^2 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (c \left (e x^2+d\right )^p\right )}{\sqrt {e}}+\frac {1408 d^{7/2} g^2 p^2 \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (c \left (e x^2+d\right )^p\right )}{245 e^{7/2}}-\frac {24 i \sqrt {d} f^2 p^3 \operatorname {PolyLog}\left (2,1-\frac {2 \sqrt {d}}{i \sqrt {e} x+\sqrt {d}}\right )}{\sqrt {e}}+\frac {1408 i d^{7/2} g^2 p^3 \operatorname {PolyLog}\left (2,1-\frac {2 \sqrt {d}}{i \sqrt {e} x+\sqrt {d}}\right )}{245 e^{7/2}}+6 d f^2 p \int \frac {\log ^2\left (c \left (e x^2+d\right )^p\right )}{e x^2+d}dx-\frac {6 d^4 g^2 p \int \frac {\log ^2\left (c \left (e x^2+d\right )^p\right )}{e x^2+d}dx}{7 e^3}\)

Input:

Int[(f + g*x^3)^2*Log[c*(d + e*x^2)^p]^3,x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2921
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*((f_) + 
 (g_.)*(x_)^(s_))^(r_.), x_Symbol] :> With[{t = ExpandIntegrand[(a + b*Log[ 
c*(d + e*x^n)^p])^q, (f + g*x^s)^r, x]}, Int[t, x] /; SumQ[t]] /; FreeQ[{a, 
 b, c, d, e, f, g, n, p, q, r, s}, x] && IntegerQ[n] && IGtQ[q, 0] && Integ 
erQ[r] && IntegerQ[s] && (EqQ[q, 1] || (GtQ[r, 0] && GtQ[s, 1]) || (LtQ[s, 
0] && LtQ[r, 0]))
 
Maple [N/A]

Not integrable

Time = 1.74 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.00

\[\int \left (g \,x^{3}+f \right )^{2} {\ln \left (c \left (e \,x^{2}+d \right )^{p}\right )}^{3}d x\]

Input:

int((g*x^3+f)^2*ln(c*(e*x^2+d)^p)^3,x)
 

Output:

int((g*x^3+f)^2*ln(c*(e*x^2+d)^p)^3,x)
 

Fricas [N/A]

Not integrable

Time = 0.09 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.46 \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx=\int { {\left (g x^{3} + f\right )}^{2} \log \left ({\left (e x^{2} + d\right )}^{p} c\right )^{3} \,d x } \] Input:

integrate((g*x^3+f)^2*log(c*(e*x^2+d)^p)^3,x, algorithm="fricas")
 

Output:

integral((g^2*x^6 + 2*f*g*x^3 + f^2)*log((e*x^2 + d)^p*c)^3, x)
 

Sympy [N/A]

Not integrable

Time = 33.14 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.92 \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx=\int \left (f + g x^{3}\right )^{2} \log {\left (c \left (d + e x^{2}\right )^{p} \right )}^{3}\, dx \] Input:

integrate((g*x**3+f)**2*ln(c*(e*x**2+d)**p)**3,x)
 

Output:

Integral((f + g*x**3)**2*log(c*(d + e*x**2)**p)**3, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx=\text {Exception raised: ValueError} \] Input:

integrate((g*x^3+f)^2*log(c*(e*x^2+d)^p)^3,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [N/A]

Not integrable

Time = 0.20 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.08 \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx=\int { {\left (g x^{3} + f\right )}^{2} \log \left ({\left (e x^{2} + d\right )}^{p} c\right )^{3} \,d x } \] Input:

integrate((g*x^3+f)^2*log(c*(e*x^2+d)^p)^3,x, algorithm="giac")
 

Output:

integrate((g*x^3 + f)^2*log((e*x^2 + d)^p*c)^3, x)
                                                                                    
                                                                                    
 

Mupad [N/A]

Not integrable

Time = 26.18 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.08 \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx=\int {\ln \left (c\,{\left (e\,x^2+d\right )}^p\right )}^3\,{\left (g\,x^3+f\right )}^2 \,d x \] Input:

int(log(c*(d + e*x^2)^p)^3*(f + g*x^3)^2,x)
 

Output:

int(log(c*(d + e*x^2)^p)^3*(f + g*x^3)^2, x)
 

Reduce [N/A]

Not integrable

Time = 0.16 (sec) , antiderivative size = 812, normalized size of antiderivative = 33.83 \[ \int \left (f+g x^3\right )^2 \log ^3\left (c \left (d+e x^2\right )^p\right ) \, dx =\text {Too large to display} \] Input:

int((g*x^3+f)^2*log(c*(e*x^2+d)^p)^3,x)
 

Output:

( - 294954240*sqrt(e)*sqrt(d)*atan((e*x)/(sqrt(e)*sqrt(d)))*d**3*g**2*p**3 
 + 1037232000*sqrt(e)*sqrt(d)*atan((e*x)/(sqrt(e)*sqrt(d)))*e**3*f**2*p**3 
 - 18522000*int(log((d + e*x**2)**p*c)**2/(d + e*x**2),x)*d**4*e*g**2*p + 
129654000*int(log((d + e*x**2)**p*c)**2/(d + e*x**2),x)*d*e**4*f**2*p + 12 
4185600*int(log((d + e*x**2)**p*c)/(d + e*x**2),x)*d**4*e*g**2*p**2 - 5186 
16000*int(log((d + e*x**2)**p*c)/(d + e*x**2),x)*d*e**4*f**2*p**2 - 108045 
00*log((d + e*x**2)**p*c)**3*d**2*e**2*f*g + 21609000*log((d + e*x**2)**p* 
c)**3*e**4*f**2*x + 10804500*log((d + e*x**2)**p*c)**3*e**4*f*g*x**4 + 308 
7000*log((d + e*x**2)**p*c)**3*e**4*g**2*x**7 + 18522000*log((d + e*x**2)* 
*p*c)**2*d**3*e*g**2*p*x + 48620250*log((d + e*x**2)**p*c)**2*d**2*e**2*f* 
g*p - 6174000*log((d + e*x**2)**p*c)**2*d**2*e**2*g**2*p*x**3 + 32413500*l 
og((d + e*x**2)**p*c)**2*d*e**3*f*g*p*x**2 + 3704400*log((d + e*x**2)**p*c 
)**2*d*e**3*g**2*p*x**5 - 129654000*log((d + e*x**2)**p*c)**2*e**4*f**2*p* 
x - 16206750*log((d + e*x**2)**p*c)**2*e**4*f*g*p*x**4 - 2646000*log((d + 
e*x**2)**p*c)**2*e**4*g**2*p*x**7 - 124185600*log((d + e*x**2)**p*c)*d**3* 
e*g**2*p**2*x - 113447250*log((d + e*x**2)**p*c)*d**2*e**2*f*g*p**2 + 1669 
9200*log((d + e*x**2)**p*c)*d**2*e**2*g**2*p**2*x**3 - 97240500*log((d + e 
*x**2)**p*c)*d*e**3*f*g*p**2*x**2 - 5080320*log((d + e*x**2)**p*c)*d*e**3* 
g**2*p**2*x**5 + 518616000*log((d + e*x**2)**p*c)*e**4*f**2*p**2*x + 16206 
750*log((d + e*x**2)**p*c)*e**4*f*g*p**2*x**4 + 1512000*log((d + e*x**2...