\(\int \frac {a+b \log (c (d+\frac {e}{x^{2/3}})^n)}{x} \, dx\) [512]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 55 \[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=-\frac {3}{2} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right ) \log \left (-\frac {e}{d x^{2/3}}\right )-\frac {3}{2} b n \operatorname {PolyLog}\left (2,1+\frac {e}{d x^{2/3}}\right ) \] Output:

-3/2*(a+b*ln(c*(d+e/x^(2/3))^n))*ln(-e/d/x^(2/3))-3/2*b*n*polylog(2,1+e/d/ 
x^(2/3))
 

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.00 \[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=a \log (x)-\frac {3}{2} b \left (\log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right ) \log \left (-\frac {e}{d x^{2/3}}\right )+n \operatorname {PolyLog}\left (2,\frac {d+\frac {e}{x^{2/3}}}{d}\right )\right ) \] Input:

Integrate[(a + b*Log[c*(d + e/x^(2/3))^n])/x,x]
 

Output:

a*Log[x] - (3*b*(Log[c*(d + e/x^(2/3))^n]*Log[-(e/(d*x^(2/3)))] + n*PolyLo 
g[2, (d + e/x^(2/3))/d]))/2
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.96, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {2904, 2841, 2752}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx\)

\(\Big \downarrow \) 2904

\(\displaystyle -\frac {3}{2} \int x^{2/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )d\frac {1}{x^{2/3}}\)

\(\Big \downarrow \) 2841

\(\displaystyle -\frac {3}{2} \left (\log \left (-\frac {e}{d x^{2/3}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )-b e n \int \frac {\log \left (-\frac {e}{d x^{2/3}}\right )}{d+\frac {e}{x^{2/3}}}d\frac {1}{x^{2/3}}\right )\)

\(\Big \downarrow \) 2752

\(\displaystyle -\frac {3}{2} \left (\log \left (-\frac {e}{d x^{2/3}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )+b n \operatorname {PolyLog}\left (2,\frac {e}{d x^{2/3}}+1\right )\right )\)

Input:

Int[(a + b*Log[c*(d + e/x^(2/3))^n])/x,x]
 

Output:

(-3*((a + b*Log[c*(d + e/x^(2/3))^n])*Log[-(e/(d*x^(2/3)))] + b*n*PolyLog[ 
2, 1 + e/(d*x^(2/3))]))/2
 

Defintions of rubi rules used

rule 2752
Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLo 
g[2, 1 - c*x], x] /; FreeQ[{c, d, e}, x] && EqQ[e + c*d, 0]
 

rule 2841
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_ 
)), x_Symbol] :> Simp[Log[e*((f + g*x)/(e*f - d*g))]*((a + b*Log[c*(d + e*x 
)^n])/g), x] - Simp[b*e*(n/g)   Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d + e*x 
), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]
 

rule 2904
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m 
_.), x_Symbol] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*L 
og[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p, q}, 
 x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) & 
&  !(EqQ[q, 1] && ILtQ[n, 0] && IGtQ[m, 0])
 
Maple [F]

\[\int \frac {a +b \ln \left (c \left (d +\frac {e}{x^{\frac {2}{3}}}\right )^{n}\right )}{x}d x\]

Input:

int((a+b*ln(c*(d+e/x^(2/3))^n))/x,x)
 

Output:

int((a+b*ln(c*(d+e/x^(2/3))^n))/x,x)
 

Fricas [F]

\[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=\int { \frac {b \log \left (c {\left (d + \frac {e}{x^{\frac {2}{3}}}\right )}^{n}\right ) + a}{x} \,d x } \] Input:

integrate((a+b*log(c*(d+e/x^(2/3))^n))/x,x, algorithm="fricas")
 

Output:

integral((b*log(c*((d*x + e*x^(1/3))/x)^n) + a)/x, x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=\text {Timed out} \] Input:

integrate((a+b*ln(c*(d+e/x**(2/3))**n))/x,x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 127 vs. \(2 (44) = 88\).

Time = 0.40 (sec) , antiderivative size = 127, normalized size of antiderivative = 2.31 \[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=-\frac {3}{2} \, {\left (2 \, \log \left (\frac {d x^{\frac {2}{3}}}{e} + 1\right ) \log \left (x^{\frac {1}{3}}\right ) + {\rm Li}_2\left (-\frac {d x^{\frac {2}{3}}}{e}\right )\right )} b n + \frac {2 \, b e n \log \left (x\right )^{2} + 6 \, b d n x^{\frac {2}{3}} \log \left (x\right ) + 6 \, b e \log \left ({\left (d x^{\frac {2}{3}} + e\right )}^{n}\right ) \log \left (x\right ) - 12 \, b e \log \left (x\right ) \log \left (x^{\frac {1}{3} \, n}\right ) - 9 \, b d n x^{\frac {2}{3}} + 6 \, {\left (b e \log \left (c\right ) + a e\right )} \log \left (x\right ) - \frac {3 \, {\left (2 \, b d n x \log \left (x\right ) - 3 \, b d n x\right )}}{x^{\frac {1}{3}}}}{6 \, e} \] Input:

integrate((a+b*log(c*(d+e/x^(2/3))^n))/x,x, algorithm="maxima")
 

Output:

-3/2*(2*log(d*x^(2/3)/e + 1)*log(x^(1/3)) + dilog(-d*x^(2/3)/e))*b*n + 1/6 
*(2*b*e*n*log(x)^2 + 6*b*d*n*x^(2/3)*log(x) + 6*b*e*log((d*x^(2/3) + e)^n) 
*log(x) - 12*b*e*log(x)*log(x^(1/3*n)) - 9*b*d*n*x^(2/3) + 6*(b*e*log(c) + 
 a*e)*log(x) - 3*(2*b*d*n*x*log(x) - 3*b*d*n*x)/x^(1/3))/e
 

Giac [F]

\[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=\int { \frac {b \log \left (c {\left (d + \frac {e}{x^{\frac {2}{3}}}\right )}^{n}\right ) + a}{x} \,d x } \] Input:

integrate((a+b*log(c*(d+e/x^(2/3))^n))/x,x, algorithm="giac")
 

Output:

integrate((b*log(c*(d + e/x^(2/3))^n) + a)/x, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=\int \frac {a+b\,\ln \left (c\,{\left (d+\frac {e}{x^{2/3}}\right )}^n\right )}{x} \,d x \] Input:

int((a + b*log(c*(d + e/x^(2/3))^n))/x,x)
 

Output:

int((a + b*log(c*(d + e/x^(2/3))^n))/x, x)
 

Reduce [F]

\[ \int \frac {a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{x} \, dx=\left (\int \frac {\mathrm {log}\left (\frac {\left (x^{\frac {2}{3}} d +e \right )^{n} c}{x^{\frac {2 n}{3}}}\right )}{x}d x \right ) b +\mathrm {log}\left (x \right ) a \] Input:

int((a+b*log(c*(d+e/x^(2/3))^n))/x,x)
 

Output:

int(log(((x**(2/3)*d + e)**n*c)/x**((2*n)/3))/x,x)*b + log(x)*a