\(\int x^2 (a+b \log (c (d+\frac {e}{x^{2/3}})^n))^3 \, dx\) [528]

Optimal result
Mathematica [B] (verified)
Rubi [N/A]
Maple [N/A]
Fricas [N/A]
Sympy [F(-1)]
Maxima [F(-2)]
Giac [N/A]
Mupad [N/A]
Reduce [N/A]

Optimal result

Integrand size = 24, antiderivative size = 24 \[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3 \, dx=\frac {568 a b^2 e^4 n^2 \sqrt [3]{x}}{105 d^4}-\frac {16 b^3 e^4 n^3 \sqrt [3]{x}}{7 d^4}+\frac {16 b^3 e^3 n^3 x}{105 d^3}+\frac {1376 b^3 e^{9/2} n^3 \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right )}{105 d^{9/2}}+\frac {1408 i b^3 e^{9/2} n^3 \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right )^2}{105 d^{9/2}}-\frac {2816 b^3 e^{9/2} n^3 \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right ) \log \left (2-\frac {2 \sqrt {e}}{\sqrt {e}-i \sqrt {d} \sqrt [3]{x}}\right )}{105 d^{9/2}}+\frac {568 b^3 e^4 n^2 \sqrt [3]{x} \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{105 d^4}-\frac {32 b^2 e^3 n^2 x \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{35 d^3}+\frac {8 b^2 e^2 n^2 x^{5/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{35 d^2}-\frac {1408 b^2 e^{9/2} n^2 \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{105 d^{9/2}}-\frac {2 b e^4 n \sqrt [3]{x} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2}{d^4}+\frac {2 b e^3 n x \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2}{3 d^3}-\frac {2 b e^2 n x^{5/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2}{5 d^2}+\frac {2 b e n x^{7/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2}{7 d}+\frac {1}{3} x^3 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3+\frac {1408 i b^3 e^{9/2} n^3 \operatorname {PolyLog}\left (2,-1+\frac {2 \sqrt {e}}{\sqrt {e}-i \sqrt {d} \sqrt [3]{x}}\right )}{105 d^{9/2}}+\frac {2 b e^5 n \text {Int}\left (\frac {\left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2}{\left (e+d x^{2/3}\right ) x^{2/3}},x\right )}{3 d^4} \] Output:

568/105*a*b^2*e^4*n^2*x^(1/3)/d^4-16/7*b^3*e^4*n^3*x^(1/3)/d^4+16/105*b^3* 
e^3*n^3*x/d^3+1376/105*b^3*e^(9/2)*n^3*arctan(d^(1/2)*x^(1/3)/e^(1/2))/d^( 
9/2)+1408/105*I*b^3*e^(9/2)*n^3*arctan(d^(1/2)*x^(1/3)/e^(1/2))^2/d^(9/2)- 
2816/105*b^3*e^(9/2)*n^3*arctan(d^(1/2)*x^(1/3)/e^(1/2))*ln(2-2*e^(1/2)/(e 
^(1/2)-I*d^(1/2)*x^(1/3)))/d^(9/2)+568/105*b^3*e^4*n^2*x^(1/3)*ln(c*(d+e/x 
^(2/3))^n)/d^4-32/35*b^2*e^3*n^2*x*(a+b*ln(c*(d+e/x^(2/3))^n))/d^3+8/35*b^ 
2*e^2*n^2*x^(5/3)*(a+b*ln(c*(d+e/x^(2/3))^n))/d^2-1408/105*b^2*e^(9/2)*n^2 
*arctan(d^(1/2)*x^(1/3)/e^(1/2))*(a+b*ln(c*(d+e/x^(2/3))^n))/d^(9/2)-2*b*e 
^4*n*x^(1/3)*(a+b*ln(c*(d+e/x^(2/3))^n))^2/d^4+2/3*b*e^3*n*x*(a+b*ln(c*(d+ 
e/x^(2/3))^n))^2/d^3-2/5*b*e^2*n*x^(5/3)*(a+b*ln(c*(d+e/x^(2/3))^n))^2/d^2 
+2/7*b*e*n*x^(7/3)*(a+b*ln(c*(d+e/x^(2/3))^n))^2/d+1/3*x^3*(a+b*ln(c*(d+e/ 
x^(2/3))^n))^3+1408/105*I*b^3*e^(9/2)*n^3*polylog(2,-1+2*e^(1/2)/(e^(1/2)- 
I*d^(1/2)*x^(1/3)))/d^(9/2)+2/3*b*e^5*n*Defer(Int)((a+b*ln(c*(d+e/x^(2/3)) 
^n))^2/(e+d*x^(2/3))/x^(2/3),x)/d^4
 

Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(5975\) vs. \(2(646)=1292\).

Time = 29.29 (sec) , antiderivative size = 5975, normalized size of antiderivative = 248.96 \[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3 \, dx=\text {Result too large to show} \] Input:

Integrate[x^2*(a + b*Log[c*(d + e/x^(2/3))^n])^3,x]
 

Output:

Result too large to show
 

Rubi [N/A]

Not integrable

Time = 3.15 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {2908, 2907, 2005, 2926, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3 \, dx\)

\(\Big \downarrow \) 2908

\(\displaystyle 3 \int x^{8/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3d\sqrt [3]{x}\)

\(\Big \downarrow \) 2907

\(\displaystyle 3 \left (\frac {2}{3} b e n \int \frac {x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2}{d+\frac {e}{x^{2/3}}}d\sqrt [3]{x}+\frac {1}{9} x^3 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3\right )\)

\(\Big \downarrow \) 2005

\(\displaystyle 3 \left (\frac {2}{3} b e n \int \frac {x^{8/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2}{x^{2/3} d+e}d\sqrt [3]{x}+\frac {1}{9} x^3 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3\right )\)

\(\Big \downarrow \) 2926

\(\displaystyle 3 \left (\frac {2}{3} b e n \int \left (\frac {\left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2 e^4}{d^4 \left (x^{2/3} d+e\right )}-\frac {\left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2 e^3}{d^4}+\frac {x^{2/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2 e^2}{d^3}-\frac {x^{4/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2 e}{d^2}+\frac {x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2}{d}\right )d\sqrt [3]{x}+\frac {1}{9} x^3 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle 3 \left (\frac {1}{9} x^3 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3+\frac {2}{3} b e n \left (\frac {e^4 \int \frac {\left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2}{x^{2/3} d+e}d\sqrt [3]{x}}{d^4}-\frac {704 b e^{7/2} n \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{105 d^{9/2}}-\frac {e^3 \sqrt [3]{x} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2}{d^4}+\frac {e^2 x \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2}{3 d^3}-\frac {16 b e^2 n x \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{35 d^3}-\frac {e x^{5/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2}{5 d^2}+\frac {4 b e n x^{5/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{35 d^2}+\frac {x^{7/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2}{7 d}+\frac {284 a b e^3 n \sqrt [3]{x}}{105 d^4}+\frac {704 i b^2 e^{7/2} n^2 \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right )^2}{105 d^{9/2}}+\frac {688 b^2 e^{7/2} n^2 \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right )}{105 d^{9/2}}-\frac {1408 b^2 e^{7/2} n^2 \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right ) \log \left (2-\frac {2 \sqrt {e}}{\sqrt {e}-i \sqrt {d} \sqrt [3]{x}}\right )}{105 d^{9/2}}+\frac {284 b^2 e^3 n \sqrt [3]{x} \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{105 d^4}+\frac {704 i b^2 e^{7/2} n^2 \operatorname {PolyLog}\left (2,\frac {2 \sqrt {e}}{\sqrt {e}-i \sqrt {d} \sqrt [3]{x}}-1\right )}{105 d^{9/2}}-\frac {8 b^2 e^3 n^2 \sqrt [3]{x}}{7 d^4}+\frac {8 b^2 e^2 n^2 x}{105 d^3}\right )\right )\)

Input:

Int[x^2*(a + b*Log[c*(d + e/x^(2/3))^n])^3,x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 2005
Int[(Fx_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[x^(m 
+ n*p)*(b + a/x^n)^p*Fx, x] /; FreeQ[{a, b, m, n}, x] && IntegerQ[p] && Neg 
Q[n]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2907
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_)*((f_.)*( 
x_))^(m_.), x_Symbol] :> Simp[(f*x)^(m + 1)*((a + b*Log[c*(d + e*x^n)^p])^q 
/(f*(m + 1))), x] - Simp[b*e*n*p*(q/(f^n*(m + 1)))   Int[(f*x)^(m + n)*((a 
+ b*Log[c*(d + e*x^n)^p])^(q - 1)/(d + e*x^n)), x], x] /; FreeQ[{a, b, c, d 
, e, f, m, p}, x] && IGtQ[q, 1] && IntegerQ[n] && NeQ[m, -1]
 

rule 2908
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_)*(x_)^(m_ 
.), x_Symbol] :> With[{k = Denominator[n]}, Simp[k   Subst[Int[x^(k*(m + 1) 
 - 1)*(a + b*Log[c*(d + e*x^(k*n))^p])^q, x], x, x^(1/k)], x]] /; FreeQ[{a, 
 b, c, d, e, m, p, q}, x] && FractionQ[n]
 

rule 2926
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m 
_.)*((f_) + (g_.)*(x_)^(s_))^(r_.), x_Symbol] :> Int[ExpandIntegrand[(a + b 
*Log[c*(d + e*x^n)^p])^q, x^m*(f + g*x^s)^r, x], x] /; FreeQ[{a, b, c, d, e 
, f, g, m, n, p, q, r, s}, x] && IGtQ[q, 0] && IntegerQ[m] && IntegerQ[r] & 
& IntegerQ[s]
 
Maple [N/A]

Not integrable

Time = 0.18 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.92

\[\int x^{2} {\left (a +b \ln \left (c \left (d +\frac {e}{x^{\frac {2}{3}}}\right )^{n}\right )\right )}^{3}d x\]

Input:

int(x^2*(a+b*ln(c*(d+e/x^(2/3))^n))^3,x)
 

Output:

int(x^2*(a+b*ln(c*(d+e/x^(2/3))^n))^3,x)
 

Fricas [N/A]

Not integrable

Time = 0.10 (sec) , antiderivative size = 93, normalized size of antiderivative = 3.88 \[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3 \, dx=\int { {\left (b \log \left (c {\left (d + \frac {e}{x^{\frac {2}{3}}}\right )}^{n}\right ) + a\right )}^{3} x^{2} \,d x } \] Input:

integrate(x^2*(a+b*log(c*(d+e/x^(2/3))^n))^3,x, algorithm="fricas")
 

Output:

integral(b^3*x^2*log(c*((d*x + e*x^(1/3))/x)^n)^3 + 3*a*b^2*x^2*log(c*((d* 
x + e*x^(1/3))/x)^n)^2 + 3*a^2*b*x^2*log(c*((d*x + e*x^(1/3))/x)^n) + a^3* 
x^2, x)
 

Sympy [F(-1)]

Timed out. \[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3 \, dx=\text {Timed out} \] Input:

integrate(x**2*(a+b*ln(c*(d+e/x**(2/3))**n))**3,x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3 \, dx=\text {Exception raised: ValueError} \] Input:

integrate(x^2*(a+b*log(c*(d+e/x^(2/3))^n))^3,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [N/A]

Not integrable

Time = 0.52 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.00 \[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3 \, dx=\int { {\left (b \log \left (c {\left (d + \frac {e}{x^{\frac {2}{3}}}\right )}^{n}\right ) + a\right )}^{3} x^{2} \,d x } \] Input:

integrate(x^2*(a+b*log(c*(d+e/x^(2/3))^n))^3,x, algorithm="giac")
 

Output:

integrate((b*log(c*(d + e/x^(2/3))^n) + a)^3*x^2, x)
 

Mupad [N/A]

Not integrable

Time = 25.27 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.00 \[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3 \, dx=\int x^2\,{\left (a+b\,\ln \left (c\,{\left (d+\frac {e}{x^{2/3}}\right )}^n\right )\right )}^3 \,d x \] Input:

int(x^2*(a + b*log(c*(d + e/x^(2/3))^n))^3,x)
 

Output:

int(x^2*(a + b*log(c*(d + e/x^(2/3))^n))^3, x)
 

Reduce [N/A]

Not integrable

Time = 0.20 (sec) , antiderivative size = 935, normalized size of antiderivative = 38.96 \[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^3 \, dx =\text {Too large to display} \] Input:

int(x^2*(a+b*log(c*(d+e/x^(2/3))^n))^3,x)
 

Output:

(630*sqrt(e)*sqrt(d)*atan((x**(1/3)*d)/(sqrt(e)*sqrt(d)))*a**2*b*e**4*n - 
4224*sqrt(e)*sqrt(d)*atan((x**(1/3)*d)/(sqrt(e)*sqrt(d)))*a*b**2*e**4*n**2 
 + 4128*sqrt(e)*sqrt(d)*atan((x**(1/3)*d)/(sqrt(e)*sqrt(d)))*b**3*e**4*n** 
3 - 126*x**(2/3)*log(((x**(2/3)*d + e)**n*c)/x**((2*n)/3))**2*b**3*d**3*e* 
*2*n*x - 252*x**(2/3)*log(((x**(2/3)*d + e)**n*c)/x**((2*n)/3))*a*b**2*d** 
3*e**2*n*x + 72*x**(2/3)*log(((x**(2/3)*d + e)**n*c)/x**((2*n)/3))*b**3*d* 
*3*e**2*n**2*x - 126*x**(2/3)*a**2*b*d**3*e**2*n*x + 72*x**(2/3)*a*b**2*d* 
*3*e**2*n**2*x - 105*x**(1/3)*log(((x**(2/3)*d + e)**n*c)/x**((2*n)/3))**3 
*b**3*d*e**4 + 90*x**(1/3)*log(((x**(2/3)*d + e)**n*c)/x**((2*n)/3))**2*b* 
*3*d**4*e*n*x**2 - 630*x**(1/3)*log(((x**(2/3)*d + e)**n*c)/x**((2*n)/3))* 
*2*b**3*d*e**4*n + 180*x**(1/3)*log(((x**(2/3)*d + e)**n*c)/x**((2*n)/3))* 
a*b**2*d**4*e*n*x**2 - 1260*x**(1/3)*log(((x**(2/3)*d + e)**n*c)/x**((2*n) 
/3))*a*b**2*d*e**4*n + 1704*x**(1/3)*log(((x**(2/3)*d + e)**n*c)/x**((2*n) 
/3))*b**3*d*e**4*n**2 + 90*x**(1/3)*a**2*b*d**4*e*n*x**2 - 630*x**(1/3)*a* 
*2*b*d*e**4*n + 1704*x**(1/3)*a*b**2*d*e**4*n**2 - 720*x**(1/3)*b**3*d*e** 
4*n**3 + 35*int(log(((x**(2/3)*d + e)**n*c)/x**((2*n)/3))**3/(x**(2/3)*e + 
 x**(1/3)*d*x),x)*b**3*d*e**5 + 420*int(log(((x**(2/3)*d + e)**n*c)/x**((2 
*n)/3))/(x**(2/3)*e + x**(1/3)*d*x),x)*a*b**2*d*e**5*n - 1408*int(log(((x* 
*(2/3)*d + e)**n*c)/x**((2*n)/3))/(x**(2/3)*e + x**(1/3)*d*x),x)*b**3*d*e* 
*5*n**2 + 35*int((x**(1/3)*log(((x**(2/3)*d + e)**n*c)/x**((2*n)/3))**3...