\(\int \log (a+b \cot (c+d x)) \, dx\) [30]

Optimal result
Mathematica [A] (verified)
Rubi [F]
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 11, antiderivative size = 150 \[ \int \log (a+b \cot (c+d x)) \, dx=\frac {i \log \left (\frac {b (i-\cot (c+d x))}{a+i b}\right ) \log (a+b \cot (c+d x))}{2 d}-\frac {i \log \left (-\frac {b (i+\cot (c+d x))}{a-i b}\right ) \log (a+b \cot (c+d x))}{2 d}-\frac {i \operatorname {PolyLog}\left (2,\frac {a+b \cot (c+d x)}{a-i b}\right )}{2 d}+\frac {i \operatorname {PolyLog}\left (2,\frac {a+b \cot (c+d x)}{a+i b}\right )}{2 d} \] Output:

1/2*I*ln(b*(I-cot(d*x+c))/(a+I*b))*ln(a+b*cot(d*x+c))/d-1/2*I*ln(-b*(I+cot 
(d*x+c))/(a-I*b))*ln(a+b*cot(d*x+c))/d-1/2*I*polylog(2,(a+b*cot(d*x+c))/(a 
-I*b))/d+1/2*I*polylog(2,(a+b*cot(d*x+c))/(a+I*b))/d
 

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.00 \[ \int \log (a+b \cot (c+d x)) \, dx=\frac {i \log \left (\frac {b (i-\cot (c+d x))}{a+i b}\right ) \log (a+b \cot (c+d x))}{2 d}-\frac {i \log \left (-\frac {b (i+\cot (c+d x))}{a-i b}\right ) \log (a+b \cot (c+d x))}{2 d}-\frac {i \operatorname {PolyLog}\left (2,\frac {a+b \cot (c+d x)}{a-i b}\right )}{2 d}+\frac {i \operatorname {PolyLog}\left (2,\frac {a+b \cot (c+d x)}{a+i b}\right )}{2 d} \] Input:

Integrate[Log[a + b*Cot[c + d*x]],x]
 

Output:

((I/2)*Log[(b*(I - Cot[c + d*x]))/(a + I*b)]*Log[a + b*Cot[c + d*x]])/d - 
((I/2)*Log[-((b*(I + Cot[c + d*x]))/(a - I*b))]*Log[a + b*Cot[c + d*x]])/d 
 - ((I/2)*PolyLog[2, (a + b*Cot[c + d*x])/(a - I*b)])/d + ((I/2)*PolyLog[2 
, (a + b*Cot[c + d*x])/(a + I*b)])/d
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \log (a+b \cot (c+d x)) \, dx\)

\(\Big \downarrow \) 3028

\(\displaystyle x \log (a+b \cot (c+d x))-\int -\frac {b d x \csc ^2(c+d x)}{a+b \cot (c+d x)}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {b d x \csc ^2(c+d x)}{a+b \cot (c+d x)}dx+x \log (a+b \cot (c+d x))\)

\(\Big \downarrow \) 27

\(\displaystyle b d \int \frac {x \csc ^2(c+d x)}{a+b \cot (c+d x)}dx+x \log (a+b \cot (c+d x))\)

\(\Big \downarrow \) 7299

\(\displaystyle b d \int \frac {x \csc ^2(c+d x)}{a+b \cot (c+d x)}dx+x \log (a+b \cot (c+d x))\)

Input:

Int[Log[a + b*Cot[c + d*x]],x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3028
Int[Log[u_], x_Symbol] :> Simp[x*Log[u], x] - Int[SimplifyIntegrand[x*(D[u, 
 x]/u), x], x] /; InverseFunctionFreeQ[u, x]
 

rule 7299
Int[u_, x_] :> CannotIntegrate[u, x]
 
Maple [A] (verified)

Time = 9.02 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.90

method result size
derivativedivides \(-\frac {b \left (-\frac {i \ln \left (a +b \cot \left (d x +c \right )\right ) \left (\ln \left (\frac {i b -b \cot \left (d x +c \right )}{i b +a}\right )-\ln \left (\frac {i b +b \cot \left (d x +c \right )}{i b -a}\right )\right )}{2 b}-\frac {i \left (\operatorname {dilog}\left (\frac {i b -b \cot \left (d x +c \right )}{i b +a}\right )-\operatorname {dilog}\left (\frac {i b +b \cot \left (d x +c \right )}{i b -a}\right )\right )}{2 b}\right )}{d}\) \(135\)
default \(-\frac {b \left (-\frac {i \ln \left (a +b \cot \left (d x +c \right )\right ) \left (\ln \left (\frac {i b -b \cot \left (d x +c \right )}{i b +a}\right )-\ln \left (\frac {i b +b \cot \left (d x +c \right )}{i b -a}\right )\right )}{2 b}-\frac {i \left (\operatorname {dilog}\left (\frac {i b -b \cot \left (d x +c \right )}{i b +a}\right )-\operatorname {dilog}\left (\frac {i b +b \cot \left (d x +c \right )}{i b -a}\right )\right )}{2 b}\right )}{d}\) \(135\)
risch \(\text {Expression too large to display}\) \(1495\)

Input:

int(ln(a+b*cot(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

-1/d*b*(-1/2*I*ln(a+b*cot(d*x+c))*(ln((I*b-b*cot(d*x+c))/(a+I*b))-ln((I*b+ 
b*cot(d*x+c))/(I*b-a)))/b-1/2*I*(dilog((I*b-b*cot(d*x+c))/(a+I*b))-dilog(( 
I*b+b*cot(d*x+c))/(I*b-a)))/b)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 625 vs. \(2 (119) = 238\).

Time = 0.15 (sec) , antiderivative size = 625, normalized size of antiderivative = 4.17 \[ \int \log (a+b \cot (c+d x)) \, dx =\text {Too large to display} \] Input:

integrate(log(a+b*cot(d*x+c)),x, algorithm="fricas")
 

Output:

1/4*(4*d*x*log((b*cos(2*d*x + 2*c) + a*sin(2*d*x + 2*c) + b)/sin(2*d*x + 2 
*c)) + 2*c*log(1/2*a^2 + I*a*b - 1/2*b^2 - 1/2*(a^2 + b^2)*cos(2*d*x + 2*c 
) + 1/2*(I*a^2 + I*b^2)*sin(2*d*x + 2*c)) + 2*c*log(-1/2*a^2 + I*a*b + 1/2 
*b^2 + 1/2*(a^2 + b^2)*cos(2*d*x + 2*c) + 1/2*(I*a^2 + I*b^2)*sin(2*d*x + 
2*c)) - 2*(d*x + c)*log((a^2 + b^2 - (a^2 + 2*I*a*b - b^2)*cos(2*d*x + 2*c 
) + (-I*a^2 + 2*a*b + I*b^2)*sin(2*d*x + 2*c))/(a^2 + b^2)) - 2*(d*x + c)* 
log((a^2 + b^2 - (a^2 - 2*I*a*b - b^2)*cos(2*d*x + 2*c) + (I*a^2 + 2*a*b - 
 I*b^2)*sin(2*d*x + 2*c))/(a^2 + b^2)) - 2*c*log(-1/2*cos(2*d*x + 2*c) + 1 
/2*I*sin(2*d*x + 2*c) + 1/2) - 2*c*log(-1/2*cos(2*d*x + 2*c) - 1/2*I*sin(2 
*d*x + 2*c) + 1/2) + 2*(d*x + c)*log(-cos(2*d*x + 2*c) + I*sin(2*d*x + 2*c 
) + 1) + 2*(d*x + c)*log(-cos(2*d*x + 2*c) - I*sin(2*d*x + 2*c) + 1) + I*d 
ilog(-(a^2 + b^2 - (a^2 + 2*I*a*b - b^2)*cos(2*d*x + 2*c) + (-I*a^2 + 2*a* 
b + I*b^2)*sin(2*d*x + 2*c))/(a^2 + b^2) + 1) - I*dilog(-(a^2 + b^2 - (a^2 
 - 2*I*a*b - b^2)*cos(2*d*x + 2*c) + (I*a^2 + 2*a*b - I*b^2)*sin(2*d*x + 2 
*c))/(a^2 + b^2) + 1) - I*dilog(cos(2*d*x + 2*c) + I*sin(2*d*x + 2*c)) + I 
*dilog(cos(2*d*x + 2*c) - I*sin(2*d*x + 2*c)))/d
 

Sympy [F]

\[ \int \log (a+b \cot (c+d x)) \, dx=\int \log {\left (a + b \cot {\left (c + d x \right )} \right )}\, dx \] Input:

integrate(ln(a+b*cot(d*x+c)),x)
 

Output:

Integral(log(a + b*cot(c + d*x)), x)
 

Maxima [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.48 \[ \int \log (a+b \cot (c+d x)) \, dx=-\frac {{\left (\pi - 2 \, \arctan \left (\frac {a^{2} \tan \left (d x + c\right ) + a b}{a^{2} + b^{2}}, \frac {a b \tan \left (d x + c\right ) + b^{2}}{a^{2} + b^{2}}\right )\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) - 4 \, {\left (d x + c\right )} \log \left (a + \frac {b}{\tan \left (d x + c\right )}\right ) + 2 \, {\left (d x + c\right )} \log \left (\frac {a^{2} \tan \left (d x + c\right )^{2} + 2 \, a b \tan \left (d x + c\right ) + b^{2}}{a^{2} + b^{2}}\right ) - 4 \, {\left (d x + c\right )} \log \left (\tan \left (d x + c\right )\right ) - 2 i \, {\rm Li}_2\left (-\frac {a \tan \left (d x + c\right ) - i \, a}{i \, a + b}\right ) + 2 i \, {\rm Li}_2\left (-\frac {a \tan \left (d x + c\right ) + i \, a}{-i \, a + b}\right ) + 2 i \, {\rm Li}_2\left (i \, \tan \left (d x + c\right ) + 1\right ) - 2 i \, {\rm Li}_2\left (-i \, \tan \left (d x + c\right ) + 1\right )}{4 \, d} \] Input:

integrate(log(a+b*cot(d*x+c)),x, algorithm="maxima")
 

Output:

-1/4*((pi - 2*arctan2((a^2*tan(d*x + c) + a*b)/(a^2 + b^2), (a*b*tan(d*x + 
 c) + b^2)/(a^2 + b^2)))*log(tan(d*x + c)^2 + 1) - 4*(d*x + c)*log(a + b/t 
an(d*x + c)) + 2*(d*x + c)*log((a^2*tan(d*x + c)^2 + 2*a*b*tan(d*x + c) + 
b^2)/(a^2 + b^2)) - 4*(d*x + c)*log(tan(d*x + c)) - 2*I*dilog(-(a*tan(d*x 
+ c) - I*a)/(I*a + b)) + 2*I*dilog(-(a*tan(d*x + c) + I*a)/(-I*a + b)) + 2 
*I*dilog(I*tan(d*x + c) + 1) - 2*I*dilog(-I*tan(d*x + c) + 1))/d
 

Giac [F]

\[ \int \log (a+b \cot (c+d x)) \, dx=\int { \log \left (b \cot \left (d x + c\right ) + a\right ) \,d x } \] Input:

integrate(log(a+b*cot(d*x+c)),x, algorithm="giac")
 

Output:

integrate(log(b*cot(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \log (a+b \cot (c+d x)) \, dx=\int \ln \left (a+b\,\mathrm {cot}\left (c+d\,x\right )\right ) \,d x \] Input:

int(log(a + b*cot(c + d*x)),x)
 

Output:

int(log(a + b*cot(c + d*x)), x)
 

Reduce [F]

\[ \int \log (a+b \cot (c+d x)) \, dx=\int \mathrm {log}\left (a +b \cot \left (d x +c \right )\right )d x \] Input:

int(log(a+b*cot(d*x+c)),x)
 

Output:

int(log(cot(c + d*x)*b + a),x)