\(\int \sec ^3(a+b x) \tan ^4(a+b x) \, dx\) [96]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 78 \[ \int \sec ^3(a+b x) \tan ^4(a+b x) \, dx=\frac {\text {arctanh}(\sin (a+b x))}{16 b}+\frac {\sec (a+b x) \tan (a+b x)}{16 b}-\frac {\sec ^3(a+b x) \tan (a+b x)}{8 b}+\frac {\sec ^3(a+b x) \tan ^3(a+b x)}{6 b} \] Output:

1/16*arctanh(sin(b*x+a))/b+1/16*sec(b*x+a)*tan(b*x+a)/b-1/8*sec(b*x+a)^3*t 
an(b*x+a)/b+1/6*sec(b*x+a)^3*tan(b*x+a)^3/b
 

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.27 \[ \int \sec ^3(a+b x) \tan ^4(a+b x) \, dx=\frac {\text {arctanh}(\sin (a+b x))}{16 b}+\frac {\sec (a+b x) \tan (a+b x)}{16 b}+\frac {\sec ^3(a+b x) \tan (a+b x)}{24 b}-\frac {\sec ^5(a+b x) \tan (a+b x)}{6 b}+\frac {\sec ^3(a+b x) \tan ^3(a+b x)}{3 b} \] Input:

Integrate[Sec[a + b*x]^3*Tan[a + b*x]^4,x]
 

Output:

ArcTanh[Sin[a + b*x]]/(16*b) + (Sec[a + b*x]*Tan[a + b*x])/(16*b) + (Sec[a 
 + b*x]^3*Tan[a + b*x])/(24*b) - (Sec[a + b*x]^5*Tan[a + b*x])/(6*b) + (Se 
c[a + b*x]^3*Tan[a + b*x]^3)/(3*b)
 

Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.13, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.471, Rules used = {3042, 3091, 3042, 3091, 3042, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^4(a+b x) \sec ^3(a+b x) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \tan (a+b x)^4 \sec (a+b x)^3dx\)

\(\Big \downarrow \) 3091

\(\displaystyle \frac {\tan ^3(a+b x) \sec ^3(a+b x)}{6 b}-\frac {1}{2} \int \sec ^3(a+b x) \tan ^2(a+b x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\tan ^3(a+b x) \sec ^3(a+b x)}{6 b}-\frac {1}{2} \int \sec (a+b x)^3 \tan (a+b x)^2dx\)

\(\Big \downarrow \) 3091

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \int \sec ^3(a+b x)dx-\frac {\tan (a+b x) \sec ^3(a+b x)}{4 b}\right )+\frac {\tan ^3(a+b x) \sec ^3(a+b x)}{6 b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \int \csc \left (a+b x+\frac {\pi }{2}\right )^3dx-\frac {\tan (a+b x) \sec ^3(a+b x)}{4 b}\right )+\frac {\tan ^3(a+b x) \sec ^3(a+b x)}{6 b}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (\frac {1}{2} \int \sec (a+b x)dx+\frac {\tan (a+b x) \sec (a+b x)}{2 b}\right )-\frac {\tan (a+b x) \sec ^3(a+b x)}{4 b}\right )+\frac {\tan ^3(a+b x) \sec ^3(a+b x)}{6 b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (\frac {1}{2} \int \csc \left (a+b x+\frac {\pi }{2}\right )dx+\frac {\tan (a+b x) \sec (a+b x)}{2 b}\right )-\frac {\tan (a+b x) \sec ^3(a+b x)}{4 b}\right )+\frac {\tan ^3(a+b x) \sec ^3(a+b x)}{6 b}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (\frac {\text {arctanh}(\sin (a+b x))}{2 b}+\frac {\tan (a+b x) \sec (a+b x)}{2 b}\right )-\frac {\tan (a+b x) \sec ^3(a+b x)}{4 b}\right )+\frac {\tan ^3(a+b x) \sec ^3(a+b x)}{6 b}\)

Input:

Int[Sec[a + b*x]^3*Tan[a + b*x]^4,x]
 

Output:

(Sec[a + b*x]^3*Tan[a + b*x]^3)/(6*b) + (-1/4*(Sec[a + b*x]^3*Tan[a + b*x] 
)/b + (ArcTanh[Sin[a + b*x]]/(2*b) + (Sec[a + b*x]*Tan[a + b*x])/(2*b))/4) 
/2
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3091
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_), x_Symbol] :> Simp[b*(a*Sec[e + f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m 
 + n - 1))), x] - Simp[b^2*((n - 1)/(m + n - 1))   Int[(a*Sec[e + f*x])^m*( 
b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] & 
& NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 2.99 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.21

method result size
derivativedivides \(\frac {\frac {\sin \left (b x +a \right )^{5}}{6 \cos \left (b x +a \right )^{6}}+\frac {\sin \left (b x +a \right )^{5}}{24 \cos \left (b x +a \right )^{4}}-\frac {\sin \left (b x +a \right )^{5}}{48 \cos \left (b x +a \right )^{2}}-\frac {\sin \left (b x +a \right )^{3}}{48}-\frac {\sin \left (b x +a \right )}{16}+\frac {\ln \left (\sec \left (b x +a \right )+\tan \left (b x +a \right )\right )}{16}}{b}\) \(94\)
default \(\frac {\frac {\sin \left (b x +a \right )^{5}}{6 \cos \left (b x +a \right )^{6}}+\frac {\sin \left (b x +a \right )^{5}}{24 \cos \left (b x +a \right )^{4}}-\frac {\sin \left (b x +a \right )^{5}}{48 \cos \left (b x +a \right )^{2}}-\frac {\sin \left (b x +a \right )^{3}}{48}-\frac {\sin \left (b x +a \right )}{16}+\frac {\ln \left (\sec \left (b x +a \right )+\tan \left (b x +a \right )\right )}{16}}{b}\) \(94\)
risch \(-\frac {i \left (3 \,{\mathrm e}^{11 i \left (b x +a \right )}-47 \,{\mathrm e}^{9 i \left (b x +a \right )}+78 \,{\mathrm e}^{7 i \left (b x +a \right )}-78 \,{\mathrm e}^{5 i \left (b x +a \right )}+47 \,{\mathrm e}^{3 i \left (b x +a \right )}-3 \,{\mathrm e}^{i \left (b x +a \right )}\right )}{24 b \left ({\mathrm e}^{2 i \left (b x +a \right )}+1\right )^{6}}+\frac {\ln \left ({\mathrm e}^{i \left (b x +a \right )}+i\right )}{16 b}-\frac {\ln \left ({\mathrm e}^{i \left (b x +a \right )}-i\right )}{16 b}\) \(124\)

Input:

int(sec(b*x+a)^3*tan(b*x+a)^4,x,method=_RETURNVERBOSE)
 

Output:

1/b*(1/6*sin(b*x+a)^5/cos(b*x+a)^6+1/24*sin(b*x+a)^5/cos(b*x+a)^4-1/48*sin 
(b*x+a)^5/cos(b*x+a)^2-1/48*sin(b*x+a)^3-1/16*sin(b*x+a)+1/16*ln(sec(b*x+a 
)+tan(b*x+a)))
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.08 \[ \int \sec ^3(a+b x) \tan ^4(a+b x) \, dx=\frac {3 \, \cos \left (b x + a\right )^{6} \log \left (\sin \left (b x + a\right ) + 1\right ) - 3 \, \cos \left (b x + a\right )^{6} \log \left (-\sin \left (b x + a\right ) + 1\right ) + 2 \, {\left (3 \, \cos \left (b x + a\right )^{4} - 14 \, \cos \left (b x + a\right )^{2} + 8\right )} \sin \left (b x + a\right )}{96 \, b \cos \left (b x + a\right )^{6}} \] Input:

integrate(sec(b*x+a)^3*tan(b*x+a)^4,x, algorithm="fricas")
 

Output:

1/96*(3*cos(b*x + a)^6*log(sin(b*x + a) + 1) - 3*cos(b*x + a)^6*log(-sin(b 
*x + a) + 1) + 2*(3*cos(b*x + a)^4 - 14*cos(b*x + a)^2 + 8)*sin(b*x + a))/ 
(b*cos(b*x + a)^6)
 

Sympy [F]

\[ \int \sec ^3(a+b x) \tan ^4(a+b x) \, dx=\int \tan ^{4}{\left (a + b x \right )} \sec ^{3}{\left (a + b x \right )}\, dx \] Input:

integrate(sec(b*x+a)**3*tan(b*x+a)**4,x)
 

Output:

Integral(tan(a + b*x)**4*sec(a + b*x)**3, x)
 

Maxima [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.17 \[ \int \sec ^3(a+b x) \tan ^4(a+b x) \, dx=-\frac {\frac {2 \, {\left (3 \, \sin \left (b x + a\right )^{5} + 8 \, \sin \left (b x + a\right )^{3} - 3 \, \sin \left (b x + a\right )\right )}}{\sin \left (b x + a\right )^{6} - 3 \, \sin \left (b x + a\right )^{4} + 3 \, \sin \left (b x + a\right )^{2} - 1} - 3 \, \log \left (\sin \left (b x + a\right ) + 1\right ) + 3 \, \log \left (\sin \left (b x + a\right ) - 1\right )}{96 \, b} \] Input:

integrate(sec(b*x+a)^3*tan(b*x+a)^4,x, algorithm="maxima")
 

Output:

-1/96*(2*(3*sin(b*x + a)^5 + 8*sin(b*x + a)^3 - 3*sin(b*x + a))/(sin(b*x + 
 a)^6 - 3*sin(b*x + a)^4 + 3*sin(b*x + a)^2 - 1) - 3*log(sin(b*x + a) + 1) 
 + 3*log(sin(b*x + a) - 1))/b
 

Giac [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.94 \[ \int \sec ^3(a+b x) \tan ^4(a+b x) \, dx=-\frac {\frac {2 \, {\left (3 \, \sin \left (b x + a\right )^{5} + 8 \, \sin \left (b x + a\right )^{3} - 3 \, \sin \left (b x + a\right )\right )}}{{\left (\sin \left (b x + a\right )^{2} - 1\right )}^{3}} - 3 \, \log \left ({\left | \sin \left (b x + a\right ) + 1 \right |}\right ) + 3 \, \log \left ({\left | \sin \left (b x + a\right ) - 1 \right |}\right )}{96 \, b} \] Input:

integrate(sec(b*x+a)^3*tan(b*x+a)^4,x, algorithm="giac")
 

Output:

-1/96*(2*(3*sin(b*x + a)^5 + 8*sin(b*x + a)^3 - 3*sin(b*x + a))/(sin(b*x + 
 a)^2 - 1)^3 - 3*log(abs(sin(b*x + a) + 1)) + 3*log(abs(sin(b*x + a) - 1)) 
)/b
 

Mupad [B] (verification not implemented)

Time = 29.72 (sec) , antiderivative size = 177, normalized size of antiderivative = 2.27 \[ \int \sec ^3(a+b x) \tan ^4(a+b x) \, dx=\frac {\mathrm {atanh}\left (\mathrm {tan}\left (\frac {a}{2}+\frac {b\,x}{2}\right )\right )}{8\,b}+\frac {-\frac {{\mathrm {tan}\left (\frac {a}{2}+\frac {b\,x}{2}\right )}^{11}}{8}+\frac {17\,{\mathrm {tan}\left (\frac {a}{2}+\frac {b\,x}{2}\right )}^9}{24}+\frac {19\,{\mathrm {tan}\left (\frac {a}{2}+\frac {b\,x}{2}\right )}^7}{4}+\frac {19\,{\mathrm {tan}\left (\frac {a}{2}+\frac {b\,x}{2}\right )}^5}{4}+\frac {17\,{\mathrm {tan}\left (\frac {a}{2}+\frac {b\,x}{2}\right )}^3}{24}-\frac {\mathrm {tan}\left (\frac {a}{2}+\frac {b\,x}{2}\right )}{8}}{b\,\left ({\mathrm {tan}\left (\frac {a}{2}+\frac {b\,x}{2}\right )}^{12}-6\,{\mathrm {tan}\left (\frac {a}{2}+\frac {b\,x}{2}\right )}^{10}+15\,{\mathrm {tan}\left (\frac {a}{2}+\frac {b\,x}{2}\right )}^8-20\,{\mathrm {tan}\left (\frac {a}{2}+\frac {b\,x}{2}\right )}^6+15\,{\mathrm {tan}\left (\frac {a}{2}+\frac {b\,x}{2}\right )}^4-6\,{\mathrm {tan}\left (\frac {a}{2}+\frac {b\,x}{2}\right )}^2+1\right )} \] Input:

int(tan(a + b*x)^4/cos(a + b*x)^3,x)
 

Output:

atanh(tan(a/2 + (b*x)/2))/(8*b) + ((17*tan(a/2 + (b*x)/2)^3)/24 - tan(a/2 
+ (b*x)/2)/8 + (19*tan(a/2 + (b*x)/2)^5)/4 + (19*tan(a/2 + (b*x)/2)^7)/4 + 
 (17*tan(a/2 + (b*x)/2)^9)/24 - tan(a/2 + (b*x)/2)^11/8)/(b*(15*tan(a/2 + 
(b*x)/2)^4 - 6*tan(a/2 + (b*x)/2)^2 - 20*tan(a/2 + (b*x)/2)^6 + 15*tan(a/2 
 + (b*x)/2)^8 - 6*tan(a/2 + (b*x)/2)^10 + tan(a/2 + (b*x)/2)^12 + 1))
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 226, normalized size of antiderivative = 2.90 \[ \int \sec ^3(a+b x) \tan ^4(a+b x) \, dx=\frac {-3 \,\mathrm {log}\left (\tan \left (\frac {b x}{2}+\frac {a}{2}\right )-1\right ) \sin \left (b x +a \right )^{6}+9 \,\mathrm {log}\left (\tan \left (\frac {b x}{2}+\frac {a}{2}\right )-1\right ) \sin \left (b x +a \right )^{4}-9 \,\mathrm {log}\left (\tan \left (\frac {b x}{2}+\frac {a}{2}\right )-1\right ) \sin \left (b x +a \right )^{2}+3 \,\mathrm {log}\left (\tan \left (\frac {b x}{2}+\frac {a}{2}\right )-1\right )+3 \,\mathrm {log}\left (\tan \left (\frac {b x}{2}+\frac {a}{2}\right )+1\right ) \sin \left (b x +a \right )^{6}-9 \,\mathrm {log}\left (\tan \left (\frac {b x}{2}+\frac {a}{2}\right )+1\right ) \sin \left (b x +a \right )^{4}+9 \,\mathrm {log}\left (\tan \left (\frac {b x}{2}+\frac {a}{2}\right )+1\right ) \sin \left (b x +a \right )^{2}-3 \,\mathrm {log}\left (\tan \left (\frac {b x}{2}+\frac {a}{2}\right )+1\right )-3 \sin \left (b x +a \right )^{5}-8 \sin \left (b x +a \right )^{3}+3 \sin \left (b x +a \right )}{48 b \left (\sin \left (b x +a \right )^{6}-3 \sin \left (b x +a \right )^{4}+3 \sin \left (b x +a \right )^{2}-1\right )} \] Input:

int(sec(b*x+a)^3*tan(b*x+a)^4,x)
 

Output:

( - 3*log(tan((a + b*x)/2) - 1)*sin(a + b*x)**6 + 9*log(tan((a + b*x)/2) - 
 1)*sin(a + b*x)**4 - 9*log(tan((a + b*x)/2) - 1)*sin(a + b*x)**2 + 3*log( 
tan((a + b*x)/2) - 1) + 3*log(tan((a + b*x)/2) + 1)*sin(a + b*x)**6 - 9*lo 
g(tan((a + b*x)/2) + 1)*sin(a + b*x)**4 + 9*log(tan((a + b*x)/2) + 1)*sin( 
a + b*x)**2 - 3*log(tan((a + b*x)/2) + 1) - 3*sin(a + b*x)**5 - 8*sin(a + 
b*x)**3 + 3*sin(a + b*x))/(48*b*(sin(a + b*x)**6 - 3*sin(a + b*x)**4 + 3*s 
in(a + b*x)**2 - 1))