\(\int (d \cos (a+b x))^{5/2} \sin ^2(a+b x) \, dx\) [196]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 98 \[ \int (d \cos (a+b x))^{5/2} \sin ^2(a+b x) \, dx=\frac {4 d^2 \sqrt {d \cos (a+b x)} E\left (\left .\frac {1}{2} (a+b x)\right |2\right )}{15 b \sqrt {\cos (a+b x)}}+\frac {4 d (d \cos (a+b x))^{3/2} \sin (a+b x)}{45 b}-\frac {2 (d \cos (a+b x))^{7/2} \sin (a+b x)}{9 b d} \] Output:

4/15*d^2*(d*cos(b*x+a))^(1/2)*EllipticE(sin(1/2*a+1/2*b*x),2^(1/2))/b/cos( 
b*x+a)^(1/2)+4/45*d*(d*cos(b*x+a))^(3/2)*sin(b*x+a)/b-2/9*(d*cos(b*x+a))^( 
7/2)*sin(b*x+a)/b/d
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.06 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.58 \[ \int (d \cos (a+b x))^{5/2} \sin ^2(a+b x) \, dx=\frac {(d \cos (a+b x))^{5/2} \sqrt [4]{\cos ^2(a+b x)} \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},\frac {3}{2},\frac {5}{2},\sin ^2(a+b x)\right ) \tan ^3(a+b x)}{3 b} \] Input:

Integrate[(d*Cos[a + b*x])^(5/2)*Sin[a + b*x]^2,x]
 

Output:

((d*Cos[a + b*x])^(5/2)*(Cos[a + b*x]^2)^(1/4)*Hypergeometric2F1[-3/4, 3/2 
, 5/2, Sin[a + b*x]^2]*Tan[a + b*x]^3)/(3*b)
 

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.05, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {3042, 3048, 3042, 3115, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin ^2(a+b x) (d \cos (a+b x))^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin (a+b x)^2 (d \cos (a+b x))^{5/2}dx\)

\(\Big \downarrow \) 3048

\(\displaystyle \frac {2}{9} \int (d \cos (a+b x))^{5/2}dx-\frac {2 \sin (a+b x) (d \cos (a+b x))^{7/2}}{9 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2}{9} \int \left (d \sin \left (a+b x+\frac {\pi }{2}\right )\right )^{5/2}dx-\frac {2 \sin (a+b x) (d \cos (a+b x))^{7/2}}{9 b d}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {2}{9} \left (\frac {3}{5} d^2 \int \sqrt {d \cos (a+b x)}dx+\frac {2 d \sin (a+b x) (d \cos (a+b x))^{3/2}}{5 b}\right )-\frac {2 \sin (a+b x) (d \cos (a+b x))^{7/2}}{9 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2}{9} \left (\frac {3}{5} d^2 \int \sqrt {d \sin \left (a+b x+\frac {\pi }{2}\right )}dx+\frac {2 d \sin (a+b x) (d \cos (a+b x))^{3/2}}{5 b}\right )-\frac {2 \sin (a+b x) (d \cos (a+b x))^{7/2}}{9 b d}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {2}{9} \left (\frac {3 d^2 \sqrt {d \cos (a+b x)} \int \sqrt {\cos (a+b x)}dx}{5 \sqrt {\cos (a+b x)}}+\frac {2 d \sin (a+b x) (d \cos (a+b x))^{3/2}}{5 b}\right )-\frac {2 \sin (a+b x) (d \cos (a+b x))^{7/2}}{9 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2}{9} \left (\frac {3 d^2 \sqrt {d \cos (a+b x)} \int \sqrt {\sin \left (a+b x+\frac {\pi }{2}\right )}dx}{5 \sqrt {\cos (a+b x)}}+\frac {2 d \sin (a+b x) (d \cos (a+b x))^{3/2}}{5 b}\right )-\frac {2 \sin (a+b x) (d \cos (a+b x))^{7/2}}{9 b d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2}{9} \left (\frac {6 d^2 E\left (\left .\frac {1}{2} (a+b x)\right |2\right ) \sqrt {d \cos (a+b x)}}{5 b \sqrt {\cos (a+b x)}}+\frac {2 d \sin (a+b x) (d \cos (a+b x))^{3/2}}{5 b}\right )-\frac {2 \sin (a+b x) (d \cos (a+b x))^{7/2}}{9 b d}\)

Input:

Int[(d*Cos[a + b*x])^(5/2)*Sin[a + b*x]^2,x]
 

Output:

(-2*(d*Cos[a + b*x])^(7/2)*Sin[a + b*x])/(9*b*d) + (2*((6*d^2*Sqrt[d*Cos[a 
 + b*x]]*EllipticE[(a + b*x)/2, 2])/(5*b*Sqrt[Cos[a + b*x]]) + (2*d*(d*Cos 
[a + b*x])^(3/2)*Sin[a + b*x])/(5*b)))/9
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3048
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[(-a)*(b*Cos[e + f*x])^(n + 1)*((a*Sin[e + f*x])^(m - 
1)/(b*f*(m + n))), x] + Simp[a^2*((m - 1)/(m + n))   Int[(b*Cos[e + f*x])^n 
*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] 
 && NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(222\) vs. \(2(86)=172\).

Time = 7.10 (sec) , antiderivative size = 223, normalized size of antiderivative = 2.28

method result size
default \(\frac {4 \sqrt {d \left (2 \cos \left (\frac {b x}{2}+\frac {a}{2}\right )^{2}-1\right ) \sin \left (\frac {b x}{2}+\frac {a}{2}\right )^{2}}\, d^{3} \left (80 \cos \left (\frac {b x}{2}+\frac {a}{2}\right )^{11}-240 \cos \left (\frac {b x}{2}+\frac {a}{2}\right )^{9}+272 \cos \left (\frac {b x}{2}+\frac {a}{2}\right )^{7}-144 \cos \left (\frac {b x}{2}+\frac {a}{2}\right )^{5}+35 \cos \left (\frac {b x}{2}+\frac {a}{2}\right )^{3}+3 \sqrt {\frac {1}{2}-\frac {\cos \left (b x +a \right )}{2}}\, \sqrt {-2 \cos \left (\frac {b x}{2}+\frac {a}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {b x}{2}+\frac {a}{2}\right ), \sqrt {2}\right )-3 \cos \left (\frac {b x}{2}+\frac {a}{2}\right )\right )}{45 \sqrt {-d \left (2 \sin \left (\frac {b x}{2}+\frac {a}{2}\right )^{4}-\sin \left (\frac {b x}{2}+\frac {a}{2}\right )^{2}\right )}\, \sin \left (\frac {b x}{2}+\frac {a}{2}\right ) \sqrt {d \left (2 \cos \left (\frac {b x}{2}+\frac {a}{2}\right )^{2}-1\right )}\, b}\) \(223\)

Input:

int((d*cos(b*x+a))^(5/2)*sin(b*x+a)^2,x,method=_RETURNVERBOSE)
 

Output:

4/45*(d*(2*cos(1/2*b*x+1/2*a)^2-1)*sin(1/2*b*x+1/2*a)^2)^(1/2)*d^3*(80*cos 
(1/2*b*x+1/2*a)^11-240*cos(1/2*b*x+1/2*a)^9+272*cos(1/2*b*x+1/2*a)^7-144*c 
os(1/2*b*x+1/2*a)^5+35*cos(1/2*b*x+1/2*a)^3+3*(sin(1/2*b*x+1/2*a)^2)^(1/2) 
*(-2*cos(1/2*b*x+1/2*a)^2+1)^(1/2)*EllipticE(cos(1/2*b*x+1/2*a),2^(1/2))-3 
*cos(1/2*b*x+1/2*a))/(-d*(2*sin(1/2*b*x+1/2*a)^4-sin(1/2*b*x+1/2*a)^2))^(1 
/2)/sin(1/2*b*x+1/2*a)/(d*(2*cos(1/2*b*x+1/2*a)^2-1))^(1/2)/b
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.08 \[ \int (d \cos (a+b x))^{5/2} \sin ^2(a+b x) \, dx=-\frac {2 \, {\left (-6 i \, \sqrt {\frac {1}{2}} d^{\frac {5}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (b x + a\right ) + i \, \sin \left (b x + a\right )\right )\right ) + 6 i \, \sqrt {\frac {1}{2}} d^{\frac {5}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (b x + a\right ) - i \, \sin \left (b x + a\right )\right )\right ) + {\left (5 \, d^{2} \cos \left (b x + a\right )^{3} - 2 \, d^{2} \cos \left (b x + a\right )\right )} \sqrt {d \cos \left (b x + a\right )} \sin \left (b x + a\right )\right )}}{45 \, b} \] Input:

integrate((d*cos(b*x+a))^(5/2)*sin(b*x+a)^2,x, algorithm="fricas")
 

Output:

-2/45*(-6*I*sqrt(1/2)*d^(5/2)*weierstrassZeta(-4, 0, weierstrassPInverse(- 
4, 0, cos(b*x + a) + I*sin(b*x + a))) + 6*I*sqrt(1/2)*d^(5/2)*weierstrassZ 
eta(-4, 0, weierstrassPInverse(-4, 0, cos(b*x + a) - I*sin(b*x + a))) + (5 
*d^2*cos(b*x + a)^3 - 2*d^2*cos(b*x + a))*sqrt(d*cos(b*x + a))*sin(b*x + a 
))/b
 

Sympy [F(-1)]

Timed out. \[ \int (d \cos (a+b x))^{5/2} \sin ^2(a+b x) \, dx=\text {Timed out} \] Input:

integrate((d*cos(b*x+a))**(5/2)*sin(b*x+a)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (d \cos (a+b x))^{5/2} \sin ^2(a+b x) \, dx=\int { \left (d \cos \left (b x + a\right )\right )^{\frac {5}{2}} \sin \left (b x + a\right )^{2} \,d x } \] Input:

integrate((d*cos(b*x+a))^(5/2)*sin(b*x+a)^2,x, algorithm="maxima")
 

Output:

integrate((d*cos(b*x + a))^(5/2)*sin(b*x + a)^2, x)
 

Giac [F]

\[ \int (d \cos (a+b x))^{5/2} \sin ^2(a+b x) \, dx=\int { \left (d \cos \left (b x + a\right )\right )^{\frac {5}{2}} \sin \left (b x + a\right )^{2} \,d x } \] Input:

integrate((d*cos(b*x+a))^(5/2)*sin(b*x+a)^2,x, algorithm="giac")
 

Output:

integrate((d*cos(b*x + a))^(5/2)*sin(b*x + a)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int (d \cos (a+b x))^{5/2} \sin ^2(a+b x) \, dx=\int {\sin \left (a+b\,x\right )}^2\,{\left (d\,\cos \left (a+b\,x\right )\right )}^{5/2} \,d x \] Input:

int(sin(a + b*x)^2*(d*cos(a + b*x))^(5/2),x)
 

Output:

int(sin(a + b*x)^2*(d*cos(a + b*x))^(5/2), x)
 

Reduce [F]

\[ \int (d \cos (a+b x))^{5/2} \sin ^2(a+b x) \, dx=\sqrt {d}\, \left (\int \sqrt {\cos \left (b x +a \right )}\, \cos \left (b x +a \right )^{2} \sin \left (b x +a \right )^{2}d x \right ) d^{2} \] Input:

int((d*cos(b*x+a))^(5/2)*sin(b*x+a)^2,x)
 

Output:

sqrt(d)*int(sqrt(cos(a + b*x))*cos(a + b*x)**2*sin(a + b*x)**2,x)*d**2