\(\int \frac {(c \sin (a+b x))^{3/2}}{(d \cos (a+b x))^{3/2}} \, dx\) [272]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 236 \[ \int \frac {(c \sin (a+b x))^{3/2}}{(d \cos (a+b x))^{3/2}} \, dx=-\frac {c^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {d} \sqrt {c \sin (a+b x)}}\right )}{\sqrt {2} b d^{3/2}}+\frac {c^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {d} \sqrt {c \sin (a+b x)}}\right )}{\sqrt {2} b d^{3/2}}-\frac {c^{3/2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\left (\sqrt {d}+\sqrt {d} \cot (a+b x)\right ) \sqrt {c \sin (a+b x)}}\right )}{\sqrt {2} b d^{3/2}}+\frac {2 c \sqrt {c \sin (a+b x)}}{b d \sqrt {d \cos (a+b x)}} \] Output:

1/2*c^(3/2)*arctan(-1+2^(1/2)*c^(1/2)*(d*cos(b*x+a))^(1/2)/d^(1/2)/(c*sin( 
b*x+a))^(1/2))*2^(1/2)/b/d^(3/2)+1/2*c^(3/2)*arctan(1+2^(1/2)*c^(1/2)*(d*c 
os(b*x+a))^(1/2)/d^(1/2)/(c*sin(b*x+a))^(1/2))*2^(1/2)/b/d^(3/2)-1/2*c^(3/ 
2)*arctanh(2^(1/2)*c^(1/2)*(d*cos(b*x+a))^(1/2)/(d^(1/2)+d^(1/2)*cot(b*x+a 
))/(c*sin(b*x+a))^(1/2))*2^(1/2)/b/d^(3/2)+2*c*(c*sin(b*x+a))^(1/2)/b/d/(d 
*cos(b*x+a))^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.17 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.28 \[ \int \frac {(c \sin (a+b x))^{3/2}}{(d \cos (a+b x))^{3/2}} \, dx=\frac {2 \sqrt [4]{\cos ^2(a+b x)} \operatorname {Hypergeometric2F1}\left (\frac {5}{4},\frac {5}{4},\frac {9}{4},\sin ^2(a+b x)\right ) (c \sin (a+b x))^{5/2}}{5 b c d \sqrt {d \cos (a+b x)}} \] Input:

Integrate[(c*Sin[a + b*x])^(3/2)/(d*Cos[a + b*x])^(3/2),x]
 

Output:

(2*(Cos[a + b*x]^2)^(1/4)*Hypergeometric2F1[5/4, 5/4, 9/4, Sin[a + b*x]^2] 
*(c*Sin[a + b*x])^(5/2))/(5*b*c*d*Sqrt[d*Cos[a + b*x]])
 

Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 323, normalized size of antiderivative = 1.37, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 3046, 3042, 3055, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c \sin (a+b x))^{3/2}}{(d \cos (a+b x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(c \sin (a+b x))^{3/2}}{(d \cos (a+b x))^{3/2}}dx\)

\(\Big \downarrow \) 3046

\(\displaystyle \frac {2 c \sqrt {c \sin (a+b x)}}{b d \sqrt {d \cos (a+b x)}}-\frac {c^2 \int \frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}dx}{d^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 c \sqrt {c \sin (a+b x)}}{b d \sqrt {d \cos (a+b x)}}-\frac {c^2 \int \frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}dx}{d^2}\)

\(\Big \downarrow \) 3055

\(\displaystyle \frac {2 c^3 \int \frac {d \cot (a+b x)}{c \left (\cot ^2(a+b x) d^2+d^2\right )}d\frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{b d}+\frac {2 c \sqrt {c \sin (a+b x)}}{b d \sqrt {d \cos (a+b x)}}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {2 c^3 \left (\frac {\int \frac {\cot (a+b x) d+d}{\cot ^2(a+b x) d^2+d^2}d\frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{2 c}-\frac {\int \frac {d-d \cot (a+b x)}{\cot ^2(a+b x) d^2+d^2}d\frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{2 c}\right )}{b d}+\frac {2 c \sqrt {c \sin (a+b x)}}{b d \sqrt {d \cos (a+b x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 c^3 \left (\frac {\frac {\int \frac {1}{\frac {\cot (a+b x) d}{c}+\frac {d}{c}-\frac {\sqrt {2} \sqrt {d \cos (a+b x)} \sqrt {d}}{\sqrt {c} \sqrt {c \sin (a+b x)}}}d\frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{2 c}+\frac {\int \frac {1}{\frac {\cot (a+b x) d}{c}+\frac {d}{c}+\frac {\sqrt {2} \sqrt {d \cos (a+b x)} \sqrt {d}}{\sqrt {c} \sqrt {c \sin (a+b x)}}}d\frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{2 c}}{2 c}-\frac {\int \frac {d-d \cot (a+b x)}{\cot ^2(a+b x) d^2+d^2}d\frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{2 c}\right )}{b d}+\frac {2 c \sqrt {c \sin (a+b x)}}{b d \sqrt {d \cos (a+b x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 c^3 \left (\frac {\frac {\int \frac {1}{-\frac {d \cot (a+b x)}{c}-1}d\left (1-\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {d} \sqrt {c \sin (a+b x)}}\right )}{\sqrt {2} \sqrt {c} \sqrt {d}}-\frac {\int \frac {1}{-\frac {d \cot (a+b x)}{c}-1}d\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {d} \sqrt {c \sin (a+b x)}}+1\right )}{\sqrt {2} \sqrt {c} \sqrt {d}}}{2 c}-\frac {\int \frac {d-d \cot (a+b x)}{\cot ^2(a+b x) d^2+d^2}d\frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{2 c}\right )}{b d}+\frac {2 c \sqrt {c \sin (a+b x)}}{b d \sqrt {d \cos (a+b x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 c^3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {d} \sqrt {c \sin (a+b x)}}+1\right )}{\sqrt {2} \sqrt {c} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {d} \sqrt {c \sin (a+b x)}}\right )}{\sqrt {2} \sqrt {c} \sqrt {d}}}{2 c}-\frac {\int \frac {d-d \cot (a+b x)}{\cot ^2(a+b x) d^2+d^2}d\frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{2 c}\right )}{b d}+\frac {2 c \sqrt {c \sin (a+b x)}}{b d \sqrt {d \cos (a+b x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 c^3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {d} \sqrt {c \sin (a+b x)}}+1\right )}{\sqrt {2} \sqrt {c} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {d} \sqrt {c \sin (a+b x)}}\right )}{\sqrt {2} \sqrt {c} \sqrt {d}}}{2 c}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt {d}-\frac {2 \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{\sqrt {c} \left (\frac {\cot (a+b x) d}{c}+\frac {d}{c}-\frac {\sqrt {2} \sqrt {d \cos (a+b x)} \sqrt {d}}{\sqrt {c} \sqrt {c \sin (a+b x)}}\right )}d\frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{2 \sqrt {2} \sqrt {c} \sqrt {d}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {d}+\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}\right )}{\sqrt {c} \left (\frac {\cot (a+b x) d}{c}+\frac {d}{c}+\frac {\sqrt {2} \sqrt {d \cos (a+b x)} \sqrt {d}}{\sqrt {c} \sqrt {c \sin (a+b x)}}\right )}d\frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{2 \sqrt {2} \sqrt {c} \sqrt {d}}}{2 c}\right )}{b d}+\frac {2 c \sqrt {c \sin (a+b x)}}{b d \sqrt {d \cos (a+b x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 c^3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {d} \sqrt {c \sin (a+b x)}}+1\right )}{\sqrt {2} \sqrt {c} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {d} \sqrt {c \sin (a+b x)}}\right )}{\sqrt {2} \sqrt {c} \sqrt {d}}}{2 c}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {d}-\frac {2 \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{\sqrt {c} \left (\frac {\cot (a+b x) d}{c}+\frac {d}{c}-\frac {\sqrt {2} \sqrt {d \cos (a+b x)} \sqrt {d}}{\sqrt {c} \sqrt {c \sin (a+b x)}}\right )}d\frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{2 \sqrt {2} \sqrt {c} \sqrt {d}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {d}+\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}\right )}{\sqrt {c} \left (\frac {\cot (a+b x) d}{c}+\frac {d}{c}+\frac {\sqrt {2} \sqrt {d \cos (a+b x)} \sqrt {d}}{\sqrt {c} \sqrt {c \sin (a+b x)}}\right )}d\frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{2 \sqrt {2} \sqrt {c} \sqrt {d}}}{2 c}\right )}{b d}+\frac {2 c \sqrt {c \sin (a+b x)}}{b d \sqrt {d \cos (a+b x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 c^3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {d} \sqrt {c \sin (a+b x)}}+1\right )}{\sqrt {2} \sqrt {c} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {d} \sqrt {c \sin (a+b x)}}\right )}{\sqrt {2} \sqrt {c} \sqrt {d}}}{2 c}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {d}-\frac {2 \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{\frac {\cot (a+b x) d}{c}+\frac {d}{c}-\frac {\sqrt {2} \sqrt {d \cos (a+b x)} \sqrt {d}}{\sqrt {c} \sqrt {c \sin (a+b x)}}}d\frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{2 \sqrt {2} c \sqrt {d}}+\frac {\int \frac {\sqrt {d}+\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{\frac {\cot (a+b x) d}{c}+\frac {d}{c}+\frac {\sqrt {2} \sqrt {d \cos (a+b x)} \sqrt {d}}{\sqrt {c} \sqrt {c \sin (a+b x)}}}d\frac {\sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}}{2 c \sqrt {d}}}{2 c}\right )}{b d}+\frac {2 c \sqrt {c \sin (a+b x)}}{b d \sqrt {d \cos (a+b x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 c^3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {d} \sqrt {c \sin (a+b x)}}+1\right )}{\sqrt {2} \sqrt {c} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {c} \sqrt {d \cos (a+b x)}}{\sqrt {d} \sqrt {c \sin (a+b x)}}\right )}{\sqrt {2} \sqrt {c} \sqrt {d}}}{2 c}-\frac {\frac {\log \left (\frac {\sqrt {2} \sqrt {c} \sqrt {d} \sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}+d \cot (a+b x)+d\right )}{2 \sqrt {2} \sqrt {c} \sqrt {d}}-\frac {\log \left (-\frac {\sqrt {2} \sqrt {c} \sqrt {d} \sqrt {d \cos (a+b x)}}{\sqrt {c \sin (a+b x)}}+d \cot (a+b x)+d\right )}{2 \sqrt {2} \sqrt {c} \sqrt {d}}}{2 c}\right )}{b d}+\frac {2 c \sqrt {c \sin (a+b x)}}{b d \sqrt {d \cos (a+b x)}}\)

Input:

Int[(c*Sin[a + b*x])^(3/2)/(d*Cos[a + b*x])^(3/2),x]
 

Output:

(2*c^3*((-(ArcTan[1 - (Sqrt[2]*Sqrt[c]*Sqrt[d*Cos[a + b*x]])/(Sqrt[d]*Sqrt 
[c*Sin[a + b*x]])]/(Sqrt[2]*Sqrt[c]*Sqrt[d])) + ArcTan[1 + (Sqrt[2]*Sqrt[c 
]*Sqrt[d*Cos[a + b*x]])/(Sqrt[d]*Sqrt[c*Sin[a + b*x]])]/(Sqrt[2]*Sqrt[c]*S 
qrt[d]))/(2*c) - (-1/2*Log[d + d*Cot[a + b*x] - (Sqrt[2]*Sqrt[c]*Sqrt[d]*S 
qrt[d*Cos[a + b*x]])/Sqrt[c*Sin[a + b*x]]]/(Sqrt[2]*Sqrt[c]*Sqrt[d]) + Log 
[d + d*Cot[a + b*x] + (Sqrt[2]*Sqrt[c]*Sqrt[d]*Sqrt[d*Cos[a + b*x]])/Sqrt[ 
c*Sin[a + b*x]]]/(2*Sqrt[2]*Sqrt[c]*Sqrt[d]))/(2*c)))/(b*d) + (2*c*Sqrt[c* 
Sin[a + b*x]])/(b*d*Sqrt[d*Cos[a + b*x]])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3046
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[(-a)*(a*Sin[e + f*x])^(m - 1)*((b*Cos[e + f*x])^(n + 
1)/(b*f*(n + 1))), x] + Simp[a^2*((m - 1)/(b^2*(n + 1)))   Int[(a*Sin[e + f 
*x])^(m - 2)*(b*Cos[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && 
GtQ[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || EqQ[m + n, 0])
 

rule 3055
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> With[{k = Denominator[m]}, Simp[(-k)*a*(b/f)   Subst[Int[x 
^(k*(m + 1) - 1)/(a^2 + b^2*x^(2*k)), x], x, (a*Cos[e + f*x])^(1/k)/(b*Sin[ 
e + f*x])^(1/k)], x]] /; FreeQ[{a, b, e, f}, x] && EqQ[m + n, 0] && GtQ[m, 
0] && LtQ[m, 1]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(872\) vs. \(2(182)=364\).

Time = 53.78 (sec) , antiderivative size = 873, normalized size of antiderivative = 3.70

method result size
default \(\text {Expression too large to display}\) \(873\)

Input:

int((c*sin(b*x+a))^(3/2)/(d*cos(b*x+a))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/4/b*((-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*ln(-(cos(b*x+a)*c 
ot(b*x+a)-2*cot(b*x+a)-2*(-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1/2) 
*sin(b*x+a)-2*cos(b*x+a)-sin(b*x+a)+csc(b*x+a)+2)/(cos(b*x+a)-1))*cos(b*x+ 
a)-2*(-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*arctan(((-2*sin(b*x 
+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*sin(b*x+a)+cos(b*x+a)-1)/(cos(b*x+a 
)-1))*cos(b*x+a)-(-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*ln(-(co 
s(b*x+a)*cot(b*x+a)-2*cot(b*x+a)+2*(-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1 
)^2)^(1/2)*sin(b*x+a)-2*cos(b*x+a)-sin(b*x+a)+csc(b*x+a)+2)/(cos(b*x+a)-1) 
)*cos(b*x+a)+2*(-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*arctan((- 
(-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*sin(b*x+a)+cos(b*x+a)-1) 
/(cos(b*x+a)-1))*cos(b*x+a)+(-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1 
/2)*ln(-(cos(b*x+a)*cot(b*x+a)-2*cot(b*x+a)-2*(-2*sin(b*x+a)*cos(b*x+a)/(c 
os(b*x+a)+1)^2)^(1/2)*sin(b*x+a)-2*cos(b*x+a)-sin(b*x+a)+csc(b*x+a)+2)/(co 
s(b*x+a)-1))-2*arctan(((-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*s 
in(b*x+a)+cos(b*x+a)-1)/(cos(b*x+a)-1))*(-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x 
+a)+1)^2)^(1/2)-(-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*ln(-(cos 
(b*x+a)*cot(b*x+a)-2*cot(b*x+a)+2*(-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1) 
^2)^(1/2)*sin(b*x+a)-2*cos(b*x+a)-sin(b*x+a)+csc(b*x+a)+2)/(cos(b*x+a)-1)) 
+2*arctan((-(-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*sin(b*x+a)+c 
os(b*x+a)-1)/(cos(b*x+a)-1))*(-2*sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 551 vs. \(2 (182) = 364\).

Time = 0.23 (sec) , antiderivative size = 551, normalized size of antiderivative = 2.33 \[ \int \frac {(c \sin (a+b x))^{3/2}}{(d \cos (a+b x))^{3/2}} \, dx=\frac {\sqrt {2} c d \sqrt {\frac {c}{d}} \arctan \left (\frac {2 \, c \cos \left (b x + a\right )^{3} - 2 \, c \cos \left (b x + a\right )^{2} \sin \left (b x + a\right ) + \sqrt {2} \sqrt {d \cos \left (b x + a\right )} \sqrt {c \sin \left (b x + a\right )} \sqrt {\frac {c}{d}} - 2 \, c \cos \left (b x + a\right )}{2 \, {\left (c \cos \left (b x + a\right )^{3} + c \cos \left (b x + a\right )^{2} \sin \left (b x + a\right ) - c \cos \left (b x + a\right )\right )}}\right ) \cos \left (b x + a\right ) + \sqrt {2} c d \sqrt {\frac {c}{d}} \arctan \left (-\frac {2 \, c \cos \left (b x + a\right )^{3} - 2 \, c \cos \left (b x + a\right )^{2} \sin \left (b x + a\right ) - \sqrt {2} \sqrt {d \cos \left (b x + a\right )} \sqrt {c \sin \left (b x + a\right )} \sqrt {\frac {c}{d}} - 2 \, c \cos \left (b x + a\right )}{2 \, {\left (c \cos \left (b x + a\right )^{3} + c \cos \left (b x + a\right )^{2} \sin \left (b x + a\right ) - c \cos \left (b x + a\right )\right )}}\right ) \cos \left (b x + a\right ) - 2 \, \sqrt {2} c d \sqrt {\frac {c}{d}} \arctan \left (-\frac {\sqrt {2} \sqrt {d \cos \left (b x + a\right )} \sqrt {c \sin \left (b x + a\right )} \sqrt {\frac {c}{d}} {\left (\cos \left (b x + a\right ) - \sin \left (b x + a\right )\right )}}{2 \, c \cos \left (b x + a\right ) \sin \left (b x + a\right )}\right ) \cos \left (b x + a\right ) - \sqrt {2} c d \sqrt {\frac {c}{d}} \cos \left (b x + a\right ) \log \left (2 \, \sqrt {2} \sqrt {d \cos \left (b x + a\right )} \sqrt {c \sin \left (b x + a\right )} \sqrt {\frac {c}{d}} {\left (\cos \left (b x + a\right ) + \sin \left (b x + a\right )\right )} + 4 \, c \cos \left (b x + a\right ) \sin \left (b x + a\right ) + c\right ) + \sqrt {2} c d \sqrt {\frac {c}{d}} \cos \left (b x + a\right ) \log \left (-2 \, \sqrt {2} \sqrt {d \cos \left (b x + a\right )} \sqrt {c \sin \left (b x + a\right )} \sqrt {\frac {c}{d}} {\left (\cos \left (b x + a\right ) + \sin \left (b x + a\right )\right )} + 4 \, c \cos \left (b x + a\right ) \sin \left (b x + a\right ) + c\right ) + 16 \, \sqrt {d \cos \left (b x + a\right )} \sqrt {c \sin \left (b x + a\right )} c}{8 \, b d^{2} \cos \left (b x + a\right )} \] Input:

integrate((c*sin(b*x+a))^(3/2)/(d*cos(b*x+a))^(3/2),x, algorithm="fricas")
 

Output:

1/8*(sqrt(2)*c*d*sqrt(c/d)*arctan(1/2*(2*c*cos(b*x + a)^3 - 2*c*cos(b*x + 
a)^2*sin(b*x + a) + sqrt(2)*sqrt(d*cos(b*x + a))*sqrt(c*sin(b*x + a))*sqrt 
(c/d) - 2*c*cos(b*x + a))/(c*cos(b*x + a)^3 + c*cos(b*x + a)^2*sin(b*x + a 
) - c*cos(b*x + a)))*cos(b*x + a) + sqrt(2)*c*d*sqrt(c/d)*arctan(-1/2*(2*c 
*cos(b*x + a)^3 - 2*c*cos(b*x + a)^2*sin(b*x + a) - sqrt(2)*sqrt(d*cos(b*x 
 + a))*sqrt(c*sin(b*x + a))*sqrt(c/d) - 2*c*cos(b*x + a))/(c*cos(b*x + a)^ 
3 + c*cos(b*x + a)^2*sin(b*x + a) - c*cos(b*x + a)))*cos(b*x + a) - 2*sqrt 
(2)*c*d*sqrt(c/d)*arctan(-1/2*sqrt(2)*sqrt(d*cos(b*x + a))*sqrt(c*sin(b*x 
+ a))*sqrt(c/d)*(cos(b*x + a) - sin(b*x + a))/(c*cos(b*x + a)*sin(b*x + a) 
))*cos(b*x + a) - sqrt(2)*c*d*sqrt(c/d)*cos(b*x + a)*log(2*sqrt(2)*sqrt(d* 
cos(b*x + a))*sqrt(c*sin(b*x + a))*sqrt(c/d)*(cos(b*x + a) + sin(b*x + a)) 
 + 4*c*cos(b*x + a)*sin(b*x + a) + c) + sqrt(2)*c*d*sqrt(c/d)*cos(b*x + a) 
*log(-2*sqrt(2)*sqrt(d*cos(b*x + a))*sqrt(c*sin(b*x + a))*sqrt(c/d)*(cos(b 
*x + a) + sin(b*x + a)) + 4*c*cos(b*x + a)*sin(b*x + a) + c) + 16*sqrt(d*c 
os(b*x + a))*sqrt(c*sin(b*x + a))*c)/(b*d^2*cos(b*x + a))
 

Sympy [F]

\[ \int \frac {(c \sin (a+b x))^{3/2}}{(d \cos (a+b x))^{3/2}} \, dx=\int \frac {\left (c \sin {\left (a + b x \right )}\right )^{\frac {3}{2}}}{\left (d \cos {\left (a + b x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((c*sin(b*x+a))**(3/2)/(d*cos(b*x+a))**(3/2),x)
 

Output:

Integral((c*sin(a + b*x))**(3/2)/(d*cos(a + b*x))**(3/2), x)
 

Maxima [F]

\[ \int \frac {(c \sin (a+b x))^{3/2}}{(d \cos (a+b x))^{3/2}} \, dx=\int { \frac {\left (c \sin \left (b x + a\right )\right )^{\frac {3}{2}}}{\left (d \cos \left (b x + a\right )\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((c*sin(b*x+a))^(3/2)/(d*cos(b*x+a))^(3/2),x, algorithm="maxima")
 

Output:

integrate((c*sin(b*x + a))^(3/2)/(d*cos(b*x + a))^(3/2), x)
 

Giac [F]

\[ \int \frac {(c \sin (a+b x))^{3/2}}{(d \cos (a+b x))^{3/2}} \, dx=\int { \frac {\left (c \sin \left (b x + a\right )\right )^{\frac {3}{2}}}{\left (d \cos \left (b x + a\right )\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((c*sin(b*x+a))^(3/2)/(d*cos(b*x+a))^(3/2),x, algorithm="giac")
 

Output:

integrate((c*sin(b*x + a))^(3/2)/(d*cos(b*x + a))^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(c \sin (a+b x))^{3/2}}{(d \cos (a+b x))^{3/2}} \, dx=\int \frac {{\left (c\,\sin \left (a+b\,x\right )\right )}^{3/2}}{{\left (d\,\cos \left (a+b\,x\right )\right )}^{3/2}} \,d x \] Input:

int((c*sin(a + b*x))^(3/2)/(d*cos(a + b*x))^(3/2),x)
 

Output:

int((c*sin(a + b*x))^(3/2)/(d*cos(a + b*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {(c \sin (a+b x))^{3/2}}{(d \cos (a+b x))^{3/2}} \, dx=\frac {\sqrt {d}\, \sqrt {c}\, c \left (-\cos \left (b x +a \right ) \left (\int \frac {\sqrt {\sin \left (b x +a \right )}\, \sqrt {\cos \left (b x +a \right )}}{\sin \left (b x +a \right )}d x \right ) b +2 \sqrt {\sin \left (b x +a \right )}\, \sqrt {\cos \left (b x +a \right )}\right )}{\cos \left (b x +a \right ) b \,d^{2}} \] Input:

int((c*sin(b*x+a))^(3/2)/(d*cos(b*x+a))^(3/2),x)
 

Output:

(sqrt(d)*sqrt(c)*c*( - cos(a + b*x)*int((sqrt(sin(a + b*x))*sqrt(cos(a + b 
*x)))/sin(a + b*x),x)*b + 2*sqrt(sin(a + b*x))*sqrt(cos(a + b*x))))/(cos(a 
 + b*x)*b*d**2)