\(\int (d \cos (a+b x))^{9/2} (c \sin (a+b x))^{5/2} \, dx\) [276]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 166 \[ \int (d \cos (a+b x))^{9/2} (c \sin (a+b x))^{5/2} \, dx=\frac {c d^3 (d \cos (a+b x))^{3/2} (c \sin (a+b x))^{3/2}}{20 b}+\frac {3 c d (d \cos (a+b x))^{7/2} (c \sin (a+b x))^{3/2}}{70 b}-\frac {c (d \cos (a+b x))^{11/2} (c \sin (a+b x))^{3/2}}{7 b d}+\frac {3 c^2 d^4 \sqrt {d \cos (a+b x)} E\left (\left .a-\frac {\pi }{4}+b x\right |2\right ) \sqrt {c \sin (a+b x)}}{40 b \sqrt {\sin (2 a+2 b x)}} \] Output:

1/20*c*d^3*(d*cos(b*x+a))^(3/2)*(c*sin(b*x+a))^(3/2)/b+3/70*c*d*(d*cos(b*x 
+a))^(7/2)*(c*sin(b*x+a))^(3/2)/b-1/7*c*(d*cos(b*x+a))^(11/2)*(c*sin(b*x+a 
))^(3/2)/b/d-3/40*c^2*d^4*(d*cos(b*x+a))^(1/2)*EllipticE(cos(a+1/4*Pi+b*x) 
,2^(1/2))*(c*sin(b*x+a))^(1/2)/b/sin(2*b*x+2*a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.21 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.43 \[ \int (d \cos (a+b x))^{9/2} (c \sin (a+b x))^{5/2} \, dx=\frac {2 (d \cos (a+b x))^{9/2} \sqrt [4]{\cos ^2(a+b x)} \operatorname {Hypergeometric2F1}\left (-\frac {7}{4},\frac {7}{4},\frac {11}{4},\sin ^2(a+b x)\right ) \sec ^5(a+b x) (c \sin (a+b x))^{7/2}}{7 b c} \] Input:

Integrate[(d*Cos[a + b*x])^(9/2)*(c*Sin[a + b*x])^(5/2),x]
 

Output:

(2*(d*Cos[a + b*x])^(9/2)*(Cos[a + b*x]^2)^(1/4)*Hypergeometric2F1[-7/4, 7 
/4, 11/4, Sin[a + b*x]^2]*Sec[a + b*x]^5*(c*Sin[a + b*x])^(7/2))/(7*b*c)
 

Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.09, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3048, 3042, 3049, 3042, 3049, 3042, 3052, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c \sin (a+b x))^{5/2} (d \cos (a+b x))^{9/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (c \sin (a+b x))^{5/2} (d \cos (a+b x))^{9/2}dx\)

\(\Big \downarrow \) 3048

\(\displaystyle \frac {3}{14} c^2 \int (d \cos (a+b x))^{9/2} \sqrt {c \sin (a+b x)}dx-\frac {c (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{11/2}}{7 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{14} c^2 \int (d \cos (a+b x))^{9/2} \sqrt {c \sin (a+b x)}dx-\frac {c (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{11/2}}{7 b d}\)

\(\Big \downarrow \) 3049

\(\displaystyle \frac {3}{14} c^2 \left (\frac {7}{10} d^2 \int (d \cos (a+b x))^{5/2} \sqrt {c \sin (a+b x)}dx+\frac {d (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{7/2}}{5 b c}\right )-\frac {c (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{11/2}}{7 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{14} c^2 \left (\frac {7}{10} d^2 \int (d \cos (a+b x))^{5/2} \sqrt {c \sin (a+b x)}dx+\frac {d (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{7/2}}{5 b c}\right )-\frac {c (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{11/2}}{7 b d}\)

\(\Big \downarrow \) 3049

\(\displaystyle \frac {3}{14} c^2 \left (\frac {7}{10} d^2 \left (\frac {1}{2} d^2 \int \sqrt {d \cos (a+b x)} \sqrt {c \sin (a+b x)}dx+\frac {d (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{3/2}}{3 b c}\right )+\frac {d (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{7/2}}{5 b c}\right )-\frac {c (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{11/2}}{7 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{14} c^2 \left (\frac {7}{10} d^2 \left (\frac {1}{2} d^2 \int \sqrt {d \cos (a+b x)} \sqrt {c \sin (a+b x)}dx+\frac {d (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{3/2}}{3 b c}\right )+\frac {d (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{7/2}}{5 b c}\right )-\frac {c (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{11/2}}{7 b d}\)

\(\Big \downarrow \) 3052

\(\displaystyle \frac {3}{14} c^2 \left (\frac {7}{10} d^2 \left (\frac {d^2 \sqrt {c \sin (a+b x)} \sqrt {d \cos (a+b x)} \int \sqrt {\sin (2 a+2 b x)}dx}{2 \sqrt {\sin (2 a+2 b x)}}+\frac {d (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{3/2}}{3 b c}\right )+\frac {d (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{7/2}}{5 b c}\right )-\frac {c (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{11/2}}{7 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{14} c^2 \left (\frac {7}{10} d^2 \left (\frac {d^2 \sqrt {c \sin (a+b x)} \sqrt {d \cos (a+b x)} \int \sqrt {\sin (2 a+2 b x)}dx}{2 \sqrt {\sin (2 a+2 b x)}}+\frac {d (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{3/2}}{3 b c}\right )+\frac {d (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{7/2}}{5 b c}\right )-\frac {c (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{11/2}}{7 b d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {3}{14} c^2 \left (\frac {7}{10} d^2 \left (\frac {d^2 E\left (\left .a+b x-\frac {\pi }{4}\right |2\right ) \sqrt {c \sin (a+b x)} \sqrt {d \cos (a+b x)}}{2 b \sqrt {\sin (2 a+2 b x)}}+\frac {d (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{3/2}}{3 b c}\right )+\frac {d (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{7/2}}{5 b c}\right )-\frac {c (c \sin (a+b x))^{3/2} (d \cos (a+b x))^{11/2}}{7 b d}\)

Input:

Int[(d*Cos[a + b*x])^(9/2)*(c*Sin[a + b*x])^(5/2),x]
 

Output:

-1/7*(c*(d*Cos[a + b*x])^(11/2)*(c*Sin[a + b*x])^(3/2))/(b*d) + (3*c^2*((d 
*(d*Cos[a + b*x])^(7/2)*(c*Sin[a + b*x])^(3/2))/(5*b*c) + (7*d^2*((d*(d*Co 
s[a + b*x])^(3/2)*(c*Sin[a + b*x])^(3/2))/(3*b*c) + (d^2*Sqrt[d*Cos[a + b* 
x]]*EllipticE[a - Pi/4 + b*x, 2]*Sqrt[c*Sin[a + b*x]])/(2*b*Sqrt[Sin[2*a + 
 2*b*x]])))/10))/14
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3048
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[(-a)*(b*Cos[e + f*x])^(n + 1)*((a*Sin[e + f*x])^(m - 
1)/(b*f*(m + n))), x] + Simp[a^2*((m - 1)/(m + n))   Int[(b*Cos[e + f*x])^n 
*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] 
 && NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3049
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[a*(b*Sin[e + f*x])^(n + 1)*((a*Cos[e + f*x])^(m - 1)/ 
(b*f*(m + n))), x] + Simp[a^2*((m - 1)/(m + n))   Int[(b*Sin[e + f*x])^n*(a 
*Cos[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && 
 NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3052
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]] 
, x_Symbol] :> Simp[Sqrt[a*Sin[e + f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e 
 + 2*f*x]])   Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f}, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 8.94 (sec) , antiderivative size = 273, normalized size of antiderivative = 1.64

method result size
default \(\frac {c^{2} d^{4} \left (\left (21 \cos \left (b x +a \right )+21\right ) \sqrt {-\cot \left (b x +a \right )+\csc \left (b x +a \right )+1}\, \sqrt {2 \cot \left (b x +a \right )-2 \csc \left (b x +a \right )+2}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, \operatorname {EllipticF}\left (\sqrt {-\cot \left (b x +a \right )+\csc \left (b x +a \right )+1}, \frac {\sqrt {2}}{2}\right )+\left (-42 \cos \left (b x +a \right )-42\right ) \sqrt {-\cot \left (b x +a \right )+\csc \left (b x +a \right )+1}\, \sqrt {2 \cot \left (b x +a \right )-2 \csc \left (b x +a \right )+2}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, \operatorname {EllipticE}\left (\sqrt {-\cot \left (b x +a \right )+\csc \left (b x +a \right )+1}, \frac {\sqrt {2}}{2}\right )+2 \cos \left (b x +a \right ) \left (40 \cos \left (b x +a \right )^{7}-52 \cos \left (b x +a \right )^{5}-2 \cos \left (b x +a \right )^{3}-7 \cos \left (b x +a \right )+21\right )\right ) \sqrt {c \sin \left (b x +a \right )}\, \sqrt {d \cos \left (b x +a \right )}\, \sec \left (b x +a \right ) \csc \left (b x +a \right )}{560 b}\) \(273\)

Input:

int((d*cos(b*x+a))^(9/2)*(c*sin(b*x+a))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/560/b*c^2*d^4*((21*cos(b*x+a)+21)*(-cot(b*x+a)+csc(b*x+a)+1)^(1/2)*(2*co 
t(b*x+a)-2*csc(b*x+a)+2)^(1/2)*(cot(b*x+a)-csc(b*x+a))^(1/2)*EllipticF((-c 
ot(b*x+a)+csc(b*x+a)+1)^(1/2),1/2*2^(1/2))+(-42*cos(b*x+a)-42)*(-cot(b*x+a 
)+csc(b*x+a)+1)^(1/2)*(2*cot(b*x+a)-2*csc(b*x+a)+2)^(1/2)*(cot(b*x+a)-csc( 
b*x+a))^(1/2)*EllipticE((-cot(b*x+a)+csc(b*x+a)+1)^(1/2),1/2*2^(1/2))+2*co 
s(b*x+a)*(40*cos(b*x+a)^7-52*cos(b*x+a)^5-2*cos(b*x+a)^3-7*cos(b*x+a)+21)) 
*(c*sin(b*x+a))^(1/2)*(d*cos(b*x+a))^(1/2)*sec(b*x+a)*csc(b*x+a)
 

Fricas [F]

\[ \int (d \cos (a+b x))^{9/2} (c \sin (a+b x))^{5/2} \, dx=\int { \left (d \cos \left (b x + a\right )\right )^{\frac {9}{2}} \left (c \sin \left (b x + a\right )\right )^{\frac {5}{2}} \,d x } \] Input:

integrate((d*cos(b*x+a))^(9/2)*(c*sin(b*x+a))^(5/2),x, algorithm="fricas")
 

Output:

integral(-(c^2*d^4*cos(b*x + a)^6 - c^2*d^4*cos(b*x + a)^4)*sqrt(d*cos(b*x 
 + a))*sqrt(c*sin(b*x + a)), x)
 

Sympy [F(-1)]

Timed out. \[ \int (d \cos (a+b x))^{9/2} (c \sin (a+b x))^{5/2} \, dx=\text {Timed out} \] Input:

integrate((d*cos(b*x+a))**(9/2)*(c*sin(b*x+a))**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (d \cos (a+b x))^{9/2} (c \sin (a+b x))^{5/2} \, dx=\int { \left (d \cos \left (b x + a\right )\right )^{\frac {9}{2}} \left (c \sin \left (b x + a\right )\right )^{\frac {5}{2}} \,d x } \] Input:

integrate((d*cos(b*x+a))^(9/2)*(c*sin(b*x+a))^(5/2),x, algorithm="maxima")
 

Output:

integrate((d*cos(b*x + a))^(9/2)*(c*sin(b*x + a))^(5/2), x)
 

Giac [F]

\[ \int (d \cos (a+b x))^{9/2} (c \sin (a+b x))^{5/2} \, dx=\int { \left (d \cos \left (b x + a\right )\right )^{\frac {9}{2}} \left (c \sin \left (b x + a\right )\right )^{\frac {5}{2}} \,d x } \] Input:

integrate((d*cos(b*x+a))^(9/2)*(c*sin(b*x+a))^(5/2),x, algorithm="giac")
 

Output:

integrate((d*cos(b*x + a))^(9/2)*(c*sin(b*x + a))^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int (d \cos (a+b x))^{9/2} (c \sin (a+b x))^{5/2} \, dx=\int {\left (d\,\cos \left (a+b\,x\right )\right )}^{9/2}\,{\left (c\,\sin \left (a+b\,x\right )\right )}^{5/2} \,d x \] Input:

int((d*cos(a + b*x))^(9/2)*(c*sin(a + b*x))^(5/2),x)
 

Output:

int((d*cos(a + b*x))^(9/2)*(c*sin(a + b*x))^(5/2), x)
 

Reduce [F]

\[ \int (d \cos (a+b x))^{9/2} (c \sin (a+b x))^{5/2} \, dx=\sqrt {d}\, \sqrt {c}\, \left (\int \sqrt {\sin \left (b x +a \right )}\, \sqrt {\cos \left (b x +a \right )}\, \cos \left (b x +a \right )^{4} \sin \left (b x +a \right )^{2}d x \right ) c^{2} d^{4} \] Input:

int((d*cos(b*x+a))^(9/2)*(c*sin(b*x+a))^(5/2),x)
 

Output:

sqrt(d)*sqrt(c)*int(sqrt(sin(a + b*x))*sqrt(cos(a + b*x))*cos(a + b*x)**4* 
sin(a + b*x)**2,x)*c**2*d**4