\(\int \frac {\cos ^{\frac {7}{2}}(a+b x)}{\sin ^{\frac {7}{2}}(a+b x)} \, dx\) [303]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 178 \[ \int \frac {\cos ^{\frac {7}{2}}(a+b x)}{\sin ^{\frac {7}{2}}(a+b x)} \, dx=-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}\right )}{\sqrt {2} b}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}\right )}{\sqrt {2} b}-\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)} (1+\tan (a+b x))}\right )}{\sqrt {2} b}-\frac {2 \cos ^{\frac {5}{2}}(a+b x)}{5 b \sin ^{\frac {5}{2}}(a+b x)}+\frac {2 \sqrt {\cos (a+b x)}}{b \sqrt {\sin (a+b x)}} \] Output:

-1/2*arctan(1-2^(1/2)*sin(b*x+a)^(1/2)/cos(b*x+a)^(1/2))*2^(1/2)/b+1/2*arc 
tan(1+2^(1/2)*sin(b*x+a)^(1/2)/cos(b*x+a)^(1/2))*2^(1/2)/b-1/2*arctanh(2^( 
1/2)*sin(b*x+a)^(1/2)/cos(b*x+a)^(1/2)/(1+tan(b*x+a)))*2^(1/2)/b-2/5*cos(b 
*x+a)^(5/2)/b/sin(b*x+a)^(5/2)+2*cos(b*x+a)^(1/2)/b/sin(b*x+a)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.05 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.32 \[ \int \frac {\cos ^{\frac {7}{2}}(a+b x)}{\sin ^{\frac {7}{2}}(a+b x)} \, dx=-\frac {2 \cos ^2(a+b x)^{3/4} \operatorname {Hypergeometric2F1}\left (-\frac {5}{4},-\frac {5}{4},-\frac {1}{4},\sin ^2(a+b x)\right )}{5 b \cos ^{\frac {3}{2}}(a+b x) \sin ^{\frac {5}{2}}(a+b x)} \] Input:

Integrate[Cos[a + b*x]^(7/2)/Sin[a + b*x]^(7/2),x]
 

Output:

(-2*(Cos[a + b*x]^2)^(3/4)*Hypergeometric2F1[-5/4, -5/4, -1/4, Sin[a + b*x 
]^2])/(5*b*Cos[a + b*x]^(3/2)*Sin[a + b*x]^(5/2))
 

Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.29, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {3042, 3047, 3042, 3047, 3042, 3054, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {7}{2}}(a+b x)}{\sin ^{\frac {7}{2}}(a+b x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (a+b x)^{7/2}}{\sin (a+b x)^{7/2}}dx\)

\(\Big \downarrow \) 3047

\(\displaystyle -\int \frac {\cos ^{\frac {3}{2}}(a+b x)}{\sin ^{\frac {3}{2}}(a+b x)}dx-\frac {2 \cos ^{\frac {5}{2}}(a+b x)}{5 b \sin ^{\frac {5}{2}}(a+b x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\int \frac {\cos (a+b x)^{3/2}}{\sin (a+b x)^{3/2}}dx-\frac {2 \cos ^{\frac {5}{2}}(a+b x)}{5 b \sin ^{\frac {5}{2}}(a+b x)}\)

\(\Big \downarrow \) 3047

\(\displaystyle \int \frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}dx-\frac {2 \cos ^{\frac {5}{2}}(a+b x)}{5 b \sin ^{\frac {5}{2}}(a+b x)}+\frac {2 \sqrt {\cos (a+b x)}}{b \sqrt {\sin (a+b x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}dx-\frac {2 \cos ^{\frac {5}{2}}(a+b x)}{5 b \sin ^{\frac {5}{2}}(a+b x)}+\frac {2 \sqrt {\cos (a+b x)}}{b \sqrt {\sin (a+b x)}}\)

\(\Big \downarrow \) 3054

\(\displaystyle \frac {2 \int \frac {\tan (a+b x)}{\tan ^2(a+b x)+1}d\frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}}{b}-\frac {2 \cos ^{\frac {5}{2}}(a+b x)}{5 b \sin ^{\frac {5}{2}}(a+b x)}+\frac {2 \sqrt {\cos (a+b x)}}{b \sqrt {\sin (a+b x)}}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {2 \left (\frac {1}{2} \int \frac {\tan (a+b x)+1}{\tan ^2(a+b x)+1}d\frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}-\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}\right )}{b}-\frac {2 \cos ^{\frac {5}{2}}(a+b x)}{5 b \sin ^{\frac {5}{2}}(a+b x)}+\frac {2 \sqrt {\cos (a+b x)}}{b \sqrt {\sin (a+b x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{\tan (a+b x)-\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1}d\frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+\frac {1}{2} \int \frac {1}{\tan (a+b x)+\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1}d\frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}\right )-\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}\right )}{b}-\frac {2 \cos ^{\frac {5}{2}}(a+b x)}{5 b \sin ^{\frac {5}{2}}(a+b x)}+\frac {2 \sqrt {\cos (a+b x)}}{b \sqrt {\sin (a+b x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (\frac {\int \frac {1}{-\tan (a+b x)-1}d\left (1-\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan (a+b x)-1}d\left (\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1\right )}{\sqrt {2}}\right )-\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}\right )}{b}-\frac {2 \cos ^{\frac {5}{2}}(a+b x)}{5 b \sin ^{\frac {5}{2}}(a+b x)}+\frac {2 \sqrt {\cos (a+b x)}}{b \sqrt {\sin (a+b x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}\right )}{\sqrt {2}}\right )-\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}\right )}{b}-\frac {2 \cos ^{\frac {5}{2}}(a+b x)}{5 b \sin ^{\frac {5}{2}}(a+b x)}+\frac {2 \sqrt {\cos (a+b x)}}{b \sqrt {\sin (a+b x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (\frac {\int -\frac {\sqrt {2}-\frac {2 \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}}{\tan (a+b x)-\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1}d\frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}}{2 \sqrt {2}}+\frac {\int -\frac {\sqrt {2} \left (\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1\right )}{\tan (a+b x)+\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1}d\frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}\right )}{\sqrt {2}}\right )\right )}{b}-\frac {2 \cos ^{\frac {5}{2}}(a+b x)}{5 b \sin ^{\frac {5}{2}}(a+b x)}+\frac {2 \sqrt {\cos (a+b x)}}{b \sqrt {\sin (a+b x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2}-\frac {2 \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}}{\tan (a+b x)-\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1}d\frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {2} \left (\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1\right )}{\tan (a+b x)+\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1}d\frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}\right )}{\sqrt {2}}\right )\right )}{b}-\frac {2 \cos ^{\frac {5}{2}}(a+b x)}{5 b \sin ^{\frac {5}{2}}(a+b x)}+\frac {2 \sqrt {\cos (a+b x)}}{b \sqrt {\sin (a+b x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2}-\frac {2 \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}}{\tan (a+b x)-\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1}d\frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}}{2 \sqrt {2}}-\frac {1}{2} \int \frac {\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1}{\tan (a+b x)+\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1}d\frac {\sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}\right )}{\sqrt {2}}\right )\right )}{b}-\frac {2 \cos ^{\frac {5}{2}}(a+b x)}{5 b \sin ^{\frac {5}{2}}(a+b x)}+\frac {2 \sqrt {\cos (a+b x)}}{b \sqrt {\sin (a+b x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (\frac {\log \left (\tan (a+b x)-\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (a+b x)+\frac {\sqrt {2} \sqrt {\sin (a+b x)}}{\sqrt {\cos (a+b x)}}+1\right )}{2 \sqrt {2}}\right )\right )}{b}-\frac {2 \cos ^{\frac {5}{2}}(a+b x)}{5 b \sin ^{\frac {5}{2}}(a+b x)}+\frac {2 \sqrt {\cos (a+b x)}}{b \sqrt {\sin (a+b x)}}\)

Input:

Int[Cos[a + b*x]^(7/2)/Sin[a + b*x]^(7/2),x]
 

Output:

(2*((-(ArcTan[1 - (Sqrt[2]*Sqrt[Sin[a + b*x]])/Sqrt[Cos[a + b*x]]]/Sqrt[2] 
) + ArcTan[1 + (Sqrt[2]*Sqrt[Sin[a + b*x]])/Sqrt[Cos[a + b*x]]]/Sqrt[2])/2 
 + (Log[1 - (Sqrt[2]*Sqrt[Sin[a + b*x]])/Sqrt[Cos[a + b*x]] + Tan[a + b*x] 
]/(2*Sqrt[2]) - Log[1 + (Sqrt[2]*Sqrt[Sin[a + b*x]])/Sqrt[Cos[a + b*x]] + 
Tan[a + b*x]]/(2*Sqrt[2]))/2))/b - (2*Cos[a + b*x]^(5/2))/(5*b*Sin[a + b*x 
]^(5/2)) + (2*Sqrt[Cos[a + b*x]])/(b*Sqrt[Sin[a + b*x]])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3047
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[a*(a*Cos[e + f*x])^(m - 1)*((b*Sin[e + f*x])^(n + 1)/ 
(b*f*(n + 1))), x] + Simp[a^2*((m - 1)/(b^2*(n + 1)))   Int[(a*Cos[e + f*x] 
)^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ 
[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || EqQ[m + n, 0])
 

rule 3054
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k*a*(b/f)   Subst[Int[x^(k 
*(m + 1) - 1)/(a^2 + b^2*x^(2*k)), x], x, (a*Sin[e + f*x])^(1/k)/(b*Cos[e + 
 f*x])^(1/k)], x]] /; FreeQ[{a, b, e, f}, x] && EqQ[m + n, 0] && GtQ[m, 0] 
&& LtQ[m, 1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(459\) vs. \(2(145)=290\).

Time = 1.03 (sec) , antiderivative size = 460, normalized size of antiderivative = 2.58

method result size
default \(-\frac {\sqrt {2}\, \left (\left (-5 \cos \left (b x +a \right )+5\right ) \sin \left (b x +a \right ) \ln \left (-\frac {2 \sqrt {2}\, \sqrt {\frac {\sin \left (b x +a \right ) \cos \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \sin \left (b x +a \right )-\cos \left (b x +a \right ) \cot \left (b x +a \right )+2 \cot \left (b x +a \right )-\csc \left (b x +a \right )-2 \cos \left (b x +a \right )+\sin \left (b x +a \right )+2}{\cos \left (b x +a \right )-1}\right )+\left (5 \cos \left (b x +a \right )-5\right ) \sin \left (b x +a \right ) \ln \left (\frac {2 \sqrt {2}\, \sqrt {\frac {\sin \left (b x +a \right ) \cos \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \sin \left (b x +a \right )+\cos \left (b x +a \right ) \cot \left (b x +a \right )-2 \cot \left (b x +a \right )+\csc \left (b x +a \right )+2 \cos \left (b x +a \right )-\sin \left (b x +a \right )-2}{\cos \left (b x +a \right )-1}\right )+\left (10 \cos \left (b x +a \right )-10\right ) \sin \left (b x +a \right ) \arctan \left (\frac {\sqrt {2}\, \sqrt {\frac {\sin \left (b x +a \right ) \cos \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \sin \left (b x +a \right )-\cos \left (b x +a \right )+1}{\cos \left (b x +a \right )-1}\right )+\left (10 \cos \left (b x +a \right )-10\right ) \sin \left (b x +a \right ) \arctan \left (\frac {\sqrt {2}\, \sqrt {\frac {\sin \left (b x +a \right ) \cos \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \sin \left (b x +a \right )+\cos \left (b x +a \right )-1}{\cos \left (b x +a \right )-1}\right )+\left (24 \cos \left (b x +a \right )^{2}-20\right ) \sqrt {2}\, \sqrt {\frac {\sin \left (b x +a \right ) \cos \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\right ) \sqrt {\cos \left (b x +a \right )}}{20 b \sin \left (b x +a \right )^{\frac {5}{2}} \sqrt {\frac {\sin \left (b x +a \right ) \cos \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}}\) \(460\)

Input:

int(cos(b*x+a)^(7/2)/sin(b*x+a)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-1/20/b*2^(1/2)*((-5*cos(b*x+a)+5)*sin(b*x+a)*ln(-(2*2^(1/2)*(sin(b*x+a)*c 
os(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*sin(b*x+a)-cos(b*x+a)*cot(b*x+a)+2*cot(b 
*x+a)-csc(b*x+a)-2*cos(b*x+a)+sin(b*x+a)+2)/(cos(b*x+a)-1))+(5*cos(b*x+a)- 
5)*sin(b*x+a)*ln((2*2^(1/2)*(sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1/2) 
*sin(b*x+a)+cos(b*x+a)*cot(b*x+a)-2*cot(b*x+a)+csc(b*x+a)+2*cos(b*x+a)-sin 
(b*x+a)-2)/(cos(b*x+a)-1))+(10*cos(b*x+a)-10)*sin(b*x+a)*arctan((2^(1/2)*( 
sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*sin(b*x+a)-cos(b*x+a)+1)/(co 
s(b*x+a)-1))+(10*cos(b*x+a)-10)*sin(b*x+a)*arctan((2^(1/2)*(sin(b*x+a)*cos 
(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*sin(b*x+a)+cos(b*x+a)-1)/(cos(b*x+a)-1))+( 
24*cos(b*x+a)^2-20)*2^(1/2)*(sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^2)^(1/2) 
)*cos(b*x+a)^(1/2)/sin(b*x+a)^(5/2)/(sin(b*x+a)*cos(b*x+a)/(cos(b*x+a)+1)^ 
2)^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 525 vs. \(2 (145) = 290\).

Time = 0.19 (sec) , antiderivative size = 525, normalized size of antiderivative = 2.95 \[ \int \frac {\cos ^{\frac {7}{2}}(a+b x)}{\sin ^{\frac {7}{2}}(a+b x)} \, dx =\text {Too large to display} \] Input:

integrate(cos(b*x+a)^(7/2)/sin(b*x+a)^(7/2),x, algorithm="fricas")
 

Output:

-1/40*(5*(sqrt(2)*cos(b*x + a)^2 - sqrt(2))*arctan(1/2*(2*cos(b*x + a)^3 - 
 2*cos(b*x + a)^2*sin(b*x + a) + sqrt(2)*sqrt(cos(b*x + a))*sqrt(sin(b*x + 
 a)) - 2*cos(b*x + a))/(cos(b*x + a)^3 + cos(b*x + a)^2*sin(b*x + a) - cos 
(b*x + a)))*sin(b*x + a) + 5*(sqrt(2)*cos(b*x + a)^2 - sqrt(2))*arctan(-1/ 
2*(2*cos(b*x + a)^3 - 2*cos(b*x + a)^2*sin(b*x + a) - sqrt(2)*sqrt(cos(b*x 
 + a))*sqrt(sin(b*x + a)) - 2*cos(b*x + a))/(cos(b*x + a)^3 + cos(b*x + a) 
^2*sin(b*x + a) - cos(b*x + a)))*sin(b*x + a) - 10*(sqrt(2)*cos(b*x + a)^2 
 - sqrt(2))*arctan(-1/2*(sqrt(2)*cos(b*x + a) - sqrt(2)*sin(b*x + a))/(sqr 
t(cos(b*x + a))*sqrt(sin(b*x + a))))*sin(b*x + a) + 5*(sqrt(2)*cos(b*x + a 
)^2 - sqrt(2))*log(2*(sqrt(2)*cos(b*x + a) + sqrt(2)*sin(b*x + a))*sqrt(co 
s(b*x + a))*sqrt(sin(b*x + a)) + 4*cos(b*x + a)*sin(b*x + a) + 1)*sin(b*x 
+ a) - 5*(sqrt(2)*cos(b*x + a)^2 - sqrt(2))*log(-2*(sqrt(2)*cos(b*x + a) + 
 sqrt(2)*sin(b*x + a))*sqrt(cos(b*x + a))*sqrt(sin(b*x + a)) + 4*cos(b*x + 
 a)*sin(b*x + a) + 1)*sin(b*x + a) - 16*(6*cos(b*x + a)^2 - 5)*sqrt(cos(b* 
x + a))*sqrt(sin(b*x + a)))/((b*cos(b*x + a)^2 - b)*sin(b*x + a))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {7}{2}}(a+b x)}{\sin ^{\frac {7}{2}}(a+b x)} \, dx=\text {Timed out} \] Input:

integrate(cos(b*x+a)**(7/2)/sin(b*x+a)**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^{\frac {7}{2}}(a+b x)}{\sin ^{\frac {7}{2}}(a+b x)} \, dx=\int { \frac {\cos \left (b x + a\right )^{\frac {7}{2}}}{\sin \left (b x + a\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate(cos(b*x+a)^(7/2)/sin(b*x+a)^(7/2),x, algorithm="maxima")
 

Output:

integrate(cos(b*x + a)^(7/2)/sin(b*x + a)^(7/2), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {7}{2}}(a+b x)}{\sin ^{\frac {7}{2}}(a+b x)} \, dx=\text {Timed out} \] Input:

integrate(cos(b*x+a)^(7/2)/sin(b*x+a)^(7/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 26.79 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.25 \[ \int \frac {\cos ^{\frac {7}{2}}(a+b x)}{\sin ^{\frac {7}{2}}(a+b x)} \, dx=-\frac {2\,{\cos \left (a+b\,x\right )}^{9/2}\,{\left ({\sin \left (a+b\,x\right )}^2\right )}^{5/4}\,{{}}_2{\mathrm {F}}_1\left (\frac {9}{4},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (a+b\,x\right )}^2\right )}{9\,b\,{\sin \left (a+b\,x\right )}^{5/2}} \] Input:

int(cos(a + b*x)^(7/2)/sin(a + b*x)^(7/2),x)
 

Output:

-(2*cos(a + b*x)^(9/2)*(sin(a + b*x)^2)^(5/4)*hypergeom([9/4, 9/4], 13/4, 
cos(a + b*x)^2))/(9*b*sin(a + b*x)^(5/2))
 

Reduce [F]

\[ \int \frac {\cos ^{\frac {7}{2}}(a+b x)}{\sin ^{\frac {7}{2}}(a+b x)} \, dx=\frac {-2 \sqrt {\sin \left (b x +a \right )}\, \sqrt {\cos \left (b x +a \right )}\, \cos \left (b x +a \right )^{2}+10 \sqrt {\sin \left (b x +a \right )}\, \sqrt {\cos \left (b x +a \right )}\, \sin \left (b x +a \right )^{2}+5 \left (\int \frac {\sqrt {\sin \left (b x +a \right )}\, \sqrt {\cos \left (b x +a \right )}}{\cos \left (b x +a \right )}d x \right ) \sin \left (b x +a \right )^{3} b}{5 \sin \left (b x +a \right )^{3} b} \] Input:

int(cos(b*x+a)^(7/2)/sin(b*x+a)^(7/2),x)
 

Output:

( - 2*sqrt(sin(a + b*x))*sqrt(cos(a + b*x))*cos(a + b*x)**2 + 10*sqrt(sin( 
a + b*x))*sqrt(cos(a + b*x))*sin(a + b*x)**2 + 5*int((sqrt(sin(a + b*x))*s 
qrt(cos(a + b*x)))/cos(a + b*x),x)*sin(a + b*x)**3*b)/(5*sin(a + b*x)**3*b 
)