\(\int \frac {1}{\sqrt {b \sec (e+f x)} \sin ^{\frac {3}{2}}(e+f x)} \, dx\) [464]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 81 \[ \int \frac {1}{\sqrt {b \sec (e+f x)} \sin ^{\frac {3}{2}}(e+f x)} \, dx=-\frac {2 b}{f (b \sec (e+f x))^{3/2} \sqrt {\sin (e+f x)}}-\frac {2 E\left (\left .e-\frac {\pi }{4}+f x\right |2\right ) \sqrt {\sin (e+f x)}}{f \sqrt {b \sec (e+f x)} \sqrt {\sin (2 e+2 f x)}} \] Output:

-2*b/f/(b*sec(f*x+e))^(3/2)/sin(f*x+e)^(1/2)+2*EllipticE(cos(e+1/4*Pi+f*x) 
,2^(1/2))*sin(f*x+e)^(1/2)/f/(b*sec(f*x+e))^(1/2)/sin(2*f*x+2*e)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.58 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.78 \[ \int \frac {1}{\sqrt {b \sec (e+f x)} \sin ^{\frac {3}{2}}(e+f x)} \, dx=\frac {2 b \left (-1+\operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{4},\frac {1}{2},\sec ^2(e+f x)\right ) \sqrt [4]{-\tan ^2(e+f x)}\right )}{f (b \sec (e+f x))^{3/2} \sqrt {\sin (e+f x)}} \] Input:

Integrate[1/(Sqrt[b*Sec[e + f*x]]*Sin[e + f*x]^(3/2)),x]
 

Output:

(2*b*(-1 + Hypergeometric2F1[-1/2, 1/4, 1/2, Sec[e + f*x]^2]*(-Tan[e + f*x 
]^2)^(1/4)))/(f*(b*Sec[e + f*x])^(3/2)*Sqrt[Sin[e + f*x]])
 

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3042, 3064, 3042, 3065, 3042, 3052, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sin ^{\frac {3}{2}}(e+f x) \sqrt {b \sec (e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (e+f x)^{3/2} \sqrt {b \sec (e+f x)}}dx\)

\(\Big \downarrow \) 3064

\(\displaystyle -2 \int \frac {\sqrt {\sin (e+f x)}}{\sqrt {b \sec (e+f x)}}dx-\frac {2 b}{f \sqrt {\sin (e+f x)} (b \sec (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -2 \int \frac {\sqrt {\sin (e+f x)}}{\sqrt {b \sec (e+f x)}}dx-\frac {2 b}{f \sqrt {\sin (e+f x)} (b \sec (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3065

\(\displaystyle -\frac {2 \int \sqrt {b \cos (e+f x)} \sqrt {\sin (e+f x)}dx}{\sqrt {b \cos (e+f x)} \sqrt {b \sec (e+f x)}}-\frac {2 b}{f \sqrt {\sin (e+f x)} (b \sec (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 \int \sqrt {b \cos (e+f x)} \sqrt {\sin (e+f x)}dx}{\sqrt {b \cos (e+f x)} \sqrt {b \sec (e+f x)}}-\frac {2 b}{f \sqrt {\sin (e+f x)} (b \sec (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3052

\(\displaystyle -\frac {2 \sqrt {\sin (e+f x)} \int \sqrt {\sin (2 e+2 f x)}dx}{\sqrt {\sin (2 e+2 f x)} \sqrt {b \sec (e+f x)}}-\frac {2 b}{f \sqrt {\sin (e+f x)} (b \sec (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 \sqrt {\sin (e+f x)} \int \sqrt {\sin (2 e+2 f x)}dx}{\sqrt {\sin (2 e+2 f x)} \sqrt {b \sec (e+f x)}}-\frac {2 b}{f \sqrt {\sin (e+f x)} (b \sec (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {2 b}{f \sqrt {\sin (e+f x)} (b \sec (e+f x))^{3/2}}-\frac {2 \sqrt {\sin (e+f x)} E\left (\left .e+f x-\frac {\pi }{4}\right |2\right )}{f \sqrt {\sin (2 e+2 f x)} \sqrt {b \sec (e+f x)}}\)

Input:

Int[1/(Sqrt[b*Sec[e + f*x]]*Sin[e + f*x]^(3/2)),x]
 

Output:

(-2*b)/(f*(b*Sec[e + f*x])^(3/2)*Sqrt[Sin[e + f*x]]) - (2*EllipticE[e - Pi 
/4 + f*x, 2]*Sqrt[Sin[e + f*x]])/(f*Sqrt[b*Sec[e + f*x]]*Sqrt[Sin[2*e + 2* 
f*x]])
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3052
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]] 
, x_Symbol] :> Simp[Sqrt[a*Sin[e + f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e 
 + 2*f*x]])   Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f}, x]
 

rule 3064
Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[b*(a*Sin[e + f*x])^(m + 1)*((b*Sec[e + f*x])^(n - 1)/ 
(a*f*(m + 1))), x] + Simp[(m - n + 2)/(a^2*(m + 1))   Int[(a*Sin[e + f*x])^ 
(m + 2)*(b*Sec[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, - 
1] && IntegersQ[2*m, 2*n]
 

rule 3065
Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[(b*Cos[e + f*x])^n*(b*Sec[e + f*x])^n   Int[(a*Sin[e 
+ f*x])^m/(b*Cos[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, m, n}, x] && Int 
egerQ[m - 1/2] && IntegerQ[n - 1/2]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(360\) vs. \(2(72)=144\).

Time = 0.24 (sec) , antiderivative size = 361, normalized size of antiderivative = 4.46

method result size
default \(\frac {2 \sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )+1}\, \sqrt {-2 \csc \left (f x +e \right )+2 \cot \left (f x +e \right )+2}\, \sqrt {-\csc \left (f x +e \right )+\cot \left (f x +e \right )}\, \operatorname {EllipticE}\left (\sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )+1}, \frac {\sqrt {2}}{2}\right )-\sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )+1}\, \sqrt {-2 \csc \left (f x +e \right )+2 \cot \left (f x +e \right )+2}\, \sqrt {-\csc \left (f x +e \right )+\cot \left (f x +e \right )}\, \operatorname {EllipticF}\left (\sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )+1}, \frac {\sqrt {2}}{2}\right )+2 \sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )+1}\, \sqrt {-2 \csc \left (f x +e \right )+2 \cot \left (f x +e \right )+2}\, \sqrt {-\csc \left (f x +e \right )+\cot \left (f x +e \right )}\, \operatorname {EllipticE}\left (\sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )+1}, \frac {\sqrt {2}}{2}\right ) \sec \left (f x +e \right )-\sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )+1}\, \sqrt {-2 \csc \left (f x +e \right )+2 \cot \left (f x +e \right )+2}\, \sqrt {-\csc \left (f x +e \right )+\cot \left (f x +e \right )}\, \operatorname {EllipticF}\left (\sqrt {\csc \left (f x +e \right )-\cot \left (f x +e \right )+1}, \frac {\sqrt {2}}{2}\right ) \sec \left (f x +e \right )-2}{f \sqrt {b \sec \left (f x +e \right )}\, \sqrt {\sin \left (f x +e \right )}}\) \(361\)

Input:

int(1/(b*sec(f*x+e))^(1/2)/sin(f*x+e)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/f/(b*sec(f*x+e))^(1/2)/sin(f*x+e)^(1/2)*(2*(csc(f*x+e)-cot(f*x+e)+1)^(1/ 
2)*(-2*csc(f*x+e)+2*cot(f*x+e)+2)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*Ell 
ipticE((csc(f*x+e)-cot(f*x+e)+1)^(1/2),1/2*2^(1/2))-(csc(f*x+e)-cot(f*x+e) 
+1)^(1/2)*(-2*csc(f*x+e)+2*cot(f*x+e)+2)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1 
/2)*EllipticF((csc(f*x+e)-cot(f*x+e)+1)^(1/2),1/2*2^(1/2))+2*(csc(f*x+e)-c 
ot(f*x+e)+1)^(1/2)*(-2*csc(f*x+e)+2*cot(f*x+e)+2)^(1/2)*(-csc(f*x+e)+cot(f 
*x+e))^(1/2)*EllipticE((csc(f*x+e)-cot(f*x+e)+1)^(1/2),1/2*2^(1/2))*sec(f* 
x+e)-(csc(f*x+e)-cot(f*x+e)+1)^(1/2)*(-2*csc(f*x+e)+2*cot(f*x+e)+2)^(1/2)* 
(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticF((csc(f*x+e)-cot(f*x+e)+1)^(1/2),1 
/2*2^(1/2))*sec(f*x+e)-2)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 171, normalized size of antiderivative = 2.11 \[ \int \frac {1}{\sqrt {b \sec (e+f x)} \sin ^{\frac {3}{2}}(e+f x)} \, dx=-\frac {2 \, \sqrt {\frac {b}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )^{2} \sqrt {\sin \left (f x + e\right )} + i \, \sqrt {i \, b} E(\arcsin \left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\,|\,-1) \sin \left (f x + e\right ) - i \, \sqrt {-i \, b} E(\arcsin \left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\,|\,-1) \sin \left (f x + e\right ) - i \, \sqrt {i \, b} F(\arcsin \left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\,|\,-1) \sin \left (f x + e\right ) + i \, \sqrt {-i \, b} F(\arcsin \left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\,|\,-1) \sin \left (f x + e\right )}{b f \sin \left (f x + e\right )} \] Input:

integrate(1/(b*sec(f*x+e))^(1/2)/sin(f*x+e)^(3/2),x, algorithm="fricas")
 

Output:

-(2*sqrt(b/cos(f*x + e))*cos(f*x + e)^2*sqrt(sin(f*x + e)) + I*sqrt(I*b)*e 
lliptic_e(arcsin(cos(f*x + e) + I*sin(f*x + e)), -1)*sin(f*x + e) - I*sqrt 
(-I*b)*elliptic_e(arcsin(cos(f*x + e) - I*sin(f*x + e)), -1)*sin(f*x + e) 
- I*sqrt(I*b)*elliptic_f(arcsin(cos(f*x + e) + I*sin(f*x + e)), -1)*sin(f* 
x + e) + I*sqrt(-I*b)*elliptic_f(arcsin(cos(f*x + e) - I*sin(f*x + e)), -1 
)*sin(f*x + e))/(b*f*sin(f*x + e))
 

Sympy [F]

\[ \int \frac {1}{\sqrt {b \sec (e+f x)} \sin ^{\frac {3}{2}}(e+f x)} \, dx=\int \frac {1}{\sqrt {b \sec {\left (e + f x \right )}} \sin ^{\frac {3}{2}}{\left (e + f x \right )}}\, dx \] Input:

integrate(1/(b*sec(f*x+e))**(1/2)/sin(f*x+e)**(3/2),x)
 

Output:

Integral(1/(sqrt(b*sec(e + f*x))*sin(e + f*x)**(3/2)), x)
 

Maxima [F]

\[ \int \frac {1}{\sqrt {b \sec (e+f x)} \sin ^{\frac {3}{2}}(e+f x)} \, dx=\int { \frac {1}{\sqrt {b \sec \left (f x + e\right )} \sin \left (f x + e\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(b*sec(f*x+e))^(1/2)/sin(f*x+e)^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/(sqrt(b*sec(f*x + e))*sin(f*x + e)^(3/2)), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {b \sec (e+f x)} \sin ^{\frac {3}{2}}(e+f x)} \, dx=\text {Timed out} \] Input:

integrate(1/(b*sec(f*x+e))^(1/2)/sin(f*x+e)^(3/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {b \sec (e+f x)} \sin ^{\frac {3}{2}}(e+f x)} \, dx=\int \frac {1}{{\sin \left (e+f\,x\right )}^{3/2}\,\sqrt {\frac {b}{\cos \left (e+f\,x\right )}}} \,d x \] Input:

int(1/(sin(e + f*x)^(3/2)*(b/cos(e + f*x))^(1/2)),x)
 

Output:

int(1/(sin(e + f*x)^(3/2)*(b/cos(e + f*x))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {b \sec (e+f x)} \sin ^{\frac {3}{2}}(e+f x)} \, dx=\frac {\sqrt {b}\, \left (\int \frac {\sqrt {\sin \left (f x +e \right )}\, \sqrt {\sec \left (f x +e \right )}}{\sec \left (f x +e \right ) \sin \left (f x +e \right )^{2}}d x \right )}{b} \] Input:

int(1/(b*sec(f*x+e))^(1/2)/sin(f*x+e)^(3/2),x)
 

Output:

(sqrt(b)*int((sqrt(sin(e + f*x))*sqrt(sec(e + f*x)))/(sec(e + f*x)*sin(e + 
 f*x)**2),x))/b