\(\int \frac {(b \sec (a+b x))^n}{\sqrt {c \sin (a+b x)}} \, dx\) [505]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 76 \[ \int \frac {(b \sec (a+b x))^n}{\sqrt {c \sin (a+b x)}} \, dx=-\frac {c \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {1-n}{2},\frac {3-n}{2},\cos ^2(a+b x)\right ) (b \sec (a+b x))^{-1+n} \sin ^2(a+b x)^{3/4}}{(1-n) (c \sin (a+b x))^{3/2}} \] Output:

-c*hypergeom([3/4, 1/2-1/2*n],[3/2-1/2*n],cos(b*x+a)^2)*(b*sec(b*x+a))^(-1 
+n)*(sin(b*x+a)^2)^(3/4)/(1-n)/(c*sin(b*x+a))^(3/2)
 

Mathematica [A] (verified)

Time = 10.67 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.95 \[ \int \frac {(b \sec (a+b x))^n}{\sqrt {c \sin (a+b x)}} \, dx=\frac {\cos ^2(a+b x)^{\frac {1}{2} (-1+n)} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1+n}{2},\frac {5}{4},\sin ^2(a+b x)\right ) (b \sec (a+b x))^n \sin (2 (a+b x))}{b \sqrt {c \sin (a+b x)}} \] Input:

Integrate[(b*Sec[a + b*x])^n/Sqrt[c*Sin[a + b*x]],x]
 

Output:

((Cos[a + b*x]^2)^((-1 + n)/2)*Hypergeometric2F1[1/4, (1 + n)/2, 5/4, Sin[ 
a + b*x]^2]*(b*Sec[a + b*x])^n*Sin[2*(a + b*x)])/(b*Sqrt[c*Sin[a + b*x]])
 

Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3042, 3067, 3042, 3056}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(b \sec (a+b x))^n}{\sqrt {c \sin (a+b x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(b \sec (a+b x))^n}{\sqrt {c \sin (a+b x)}}dx\)

\(\Big \downarrow \) 3067

\(\displaystyle b^2 (b \cos (a+b x))^{n-1} (b \sec (a+b x))^{n-1} \int \frac {(b \cos (a+b x))^{-n}}{\sqrt {c \sin (a+b x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 (b \cos (a+b x))^{n-1} (b \sec (a+b x))^{n-1} \int \frac {(b \cos (a+b x))^{-n}}{\sqrt {c \sin (a+b x)}}dx\)

\(\Big \downarrow \) 3056

\(\displaystyle -\frac {c \sin ^2(a+b x)^{3/4} (b \sec (a+b x))^{n-1} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {1-n}{2},\frac {3-n}{2},\cos ^2(a+b x)\right )}{(1-n) (c \sin (a+b x))^{3/2}}\)

Input:

Int[(b*Sec[a + b*x])^n/Sqrt[c*Sin[a + b*x]],x]
 

Output:

-((c*Hypergeometric2F1[3/4, (1 - n)/2, (3 - n)/2, Cos[a + b*x]^2]*(b*Sec[a 
 + b*x])^(-1 + n)*(Sin[a + b*x]^2)^(3/4))/((1 - n)*(c*Sin[a + b*x])^(3/2)) 
)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3056
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[(-b^(2*IntPart[(n - 1)/2] + 1))*(b*Sin[e + f*x])^(2*F 
racPart[(n - 1)/2])*((a*Cos[e + f*x])^(m + 1)/(a*f*(m + 1)*(Sin[e + f*x]^2) 
^FracPart[(n - 1)/2]))*Hypergeometric2F1[(1 + m)/2, (1 - n)/2, (3 + m)/2, C 
os[e + f*x]^2], x] /; FreeQ[{a, b, e, f, m, n}, x] && SimplerQ[n, m]
 

rule 3067
Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[b^2*(b*Cos[e + f*x])^(n - 1)*(b*Sec[e + f*x])^(n - 1) 
   Int[(a*Sin[e + f*x])^m/(b*Cos[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, 
m, n}, x] &&  !IntegerQ[m] &&  !IntegerQ[n]
 
Maple [F]

\[\int \frac {\left (b \sec \left (b x +a \right )\right )^{n}}{\sqrt {c \sin \left (b x +a \right )}}d x\]

Input:

int((b*sec(b*x+a))^n/(c*sin(b*x+a))^(1/2),x)
 

Output:

int((b*sec(b*x+a))^n/(c*sin(b*x+a))^(1/2),x)
 

Fricas [F]

\[ \int \frac {(b \sec (a+b x))^n}{\sqrt {c \sin (a+b x)}} \, dx=\int { \frac {\left (b \sec \left (b x + a\right )\right )^{n}}{\sqrt {c \sin \left (b x + a\right )}} \,d x } \] Input:

integrate((b*sec(b*x+a))^n/(c*sin(b*x+a))^(1/2),x, algorithm="fricas")
 

Output:

integral(sqrt(c*sin(b*x + a))*(b*sec(b*x + a))^n/(c*sin(b*x + a)), x)
 

Sympy [F]

\[ \int \frac {(b \sec (a+b x))^n}{\sqrt {c \sin (a+b x)}} \, dx=\int \frac {\left (b \sec {\left (a + b x \right )}\right )^{n}}{\sqrt {c \sin {\left (a + b x \right )}}}\, dx \] Input:

integrate((b*sec(b*x+a))**n/(c*sin(b*x+a))**(1/2),x)
 

Output:

Integral((b*sec(a + b*x))**n/sqrt(c*sin(a + b*x)), x)
 

Maxima [F]

\[ \int \frac {(b \sec (a+b x))^n}{\sqrt {c \sin (a+b x)}} \, dx=\int { \frac {\left (b \sec \left (b x + a\right )\right )^{n}}{\sqrt {c \sin \left (b x + a\right )}} \,d x } \] Input:

integrate((b*sec(b*x+a))^n/(c*sin(b*x+a))^(1/2),x, algorithm="maxima")
 

Output:

integrate((b*sec(b*x + a))^n/sqrt(c*sin(b*x + a)), x)
 

Giac [F]

\[ \int \frac {(b \sec (a+b x))^n}{\sqrt {c \sin (a+b x)}} \, dx=\int { \frac {\left (b \sec \left (b x + a\right )\right )^{n}}{\sqrt {c \sin \left (b x + a\right )}} \,d x } \] Input:

integrate((b*sec(b*x+a))^n/(c*sin(b*x+a))^(1/2),x, algorithm="giac")
 

Output:

integrate((b*sec(b*x + a))^n/sqrt(c*sin(b*x + a)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(b \sec (a+b x))^n}{\sqrt {c \sin (a+b x)}} \, dx=\int \frac {{\left (\frac {b}{\cos \left (a+b\,x\right )}\right )}^n}{\sqrt {c\,\sin \left (a+b\,x\right )}} \,d x \] Input:

int((b/cos(a + b*x))^n/(c*sin(a + b*x))^(1/2),x)
 

Output:

int((b/cos(a + b*x))^n/(c*sin(a + b*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {(b \sec (a+b x))^n}{\sqrt {c \sin (a+b x)}} \, dx=\frac {\sqrt {c}\, b^{n} \left (\int \frac {\sqrt {\sin \left (b x +a \right )}\, \sec \left (b x +a \right )^{n}}{\sin \left (b x +a \right )}d x \right )}{c} \] Input:

int((b*sec(b*x+a))^n/(c*sin(b*x+a))^(1/2),x)
 

Output:

(sqrt(c)*b**n*int((sqrt(sin(a + b*x))*sec(a + b*x)**n)/sin(a + b*x),x))/c