\(\int \cos ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx\) [104]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 95 \[ \int \cos ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=-\frac {64 a^3 \cos ^5(c+d x)}{315 d (a+a \sin (c+d x))^{5/2}}-\frac {16 a^2 \cos ^5(c+d x)}{63 d (a+a \sin (c+d x))^{3/2}}-\frac {2 a \cos ^5(c+d x)}{9 d \sqrt {a+a \sin (c+d x)}} \] Output:

-64/315*a^3*cos(d*x+c)^5/d/(a+a*sin(d*x+c))^(5/2)-16/63*a^2*cos(d*x+c)^5/d 
/(a+a*sin(d*x+c))^(3/2)-2/9*a*cos(d*x+c)^5/d/(a+a*sin(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.62 \[ \int \cos ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=-\frac {2 \cos ^5(c+d x) \sqrt {a (1+\sin (c+d x))} \left (107+110 \sin (c+d x)+35 \sin ^2(c+d x)\right )}{315 d (1+\sin (c+d x))^3} \] Input:

Integrate[Cos[c + d*x]^4*Sqrt[a + a*Sin[c + d*x]],x]
 

Output:

(-2*Cos[c + d*x]^5*Sqrt[a*(1 + Sin[c + d*x])]*(107 + 110*Sin[c + d*x] + 35 
*Sin[c + d*x]^2))/(315*d*(1 + Sin[c + d*x])^3)
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3042, 3153, 3042, 3153, 3042, 3152}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^4(c+d x) \sqrt {a \sin (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (c+d x)^4 \sqrt {a \sin (c+d x)+a}dx\)

\(\Big \downarrow \) 3153

\(\displaystyle \frac {8}{9} a \int \frac {\cos ^4(c+d x)}{\sqrt {\sin (c+d x) a+a}}dx-\frac {2 a \cos ^5(c+d x)}{9 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {8}{9} a \int \frac {\cos (c+d x)^4}{\sqrt {\sin (c+d x) a+a}}dx-\frac {2 a \cos ^5(c+d x)}{9 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3153

\(\displaystyle \frac {8}{9} a \left (\frac {4}{7} a \int \frac {\cos ^4(c+d x)}{(\sin (c+d x) a+a)^{3/2}}dx-\frac {2 a \cos ^5(c+d x)}{7 d (a \sin (c+d x)+a)^{3/2}}\right )-\frac {2 a \cos ^5(c+d x)}{9 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {8}{9} a \left (\frac {4}{7} a \int \frac {\cos (c+d x)^4}{(\sin (c+d x) a+a)^{3/2}}dx-\frac {2 a \cos ^5(c+d x)}{7 d (a \sin (c+d x)+a)^{3/2}}\right )-\frac {2 a \cos ^5(c+d x)}{9 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3152

\(\displaystyle \frac {8}{9} a \left (-\frac {8 a^2 \cos ^5(c+d x)}{35 d (a \sin (c+d x)+a)^{5/2}}-\frac {2 a \cos ^5(c+d x)}{7 d (a \sin (c+d x)+a)^{3/2}}\right )-\frac {2 a \cos ^5(c+d x)}{9 d \sqrt {a \sin (c+d x)+a}}\)

Input:

Int[Cos[c + d*x]^4*Sqrt[a + a*Sin[c + d*x]],x]
 

Output:

(-2*a*Cos[c + d*x]^5)/(9*d*Sqrt[a + a*Sin[c + d*x]]) + (8*a*((-8*a^2*Cos[c 
 + d*x]^5)/(35*d*(a + a*Sin[c + d*x])^(5/2)) - (2*a*Cos[c + d*x]^5)/(7*d*( 
a + a*Sin[c + d*x])^(3/2))))/9
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3152
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x 
])^(m - 1)/(f*g*(m - 1))), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 
 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]
 

rule 3153
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(-b)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + 
f*x])^(m - 1)/(f*g*(m + p))), x] + Simp[a*((2*m + p - 1)/(m + p))   Int[(g* 
Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, 
g, m, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[Simplify[(2*m + p - 1)/2], 0] && 
NeQ[m + p, 0]
 
Maple [A] (verified)

Time = 0.28 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.68

method result size
default \(\frac {2 \left (1+\sin \left (d x +c \right )\right ) a \left (\sin \left (d x +c \right )-1\right )^{3} \left (35 \sin \left (d x +c \right )^{2}+110 \sin \left (d x +c \right )+107\right )}{315 \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(65\)

Input:

int(cos(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2/315*(1+sin(d*x+c))*a*(sin(d*x+c)-1)^3*(35*sin(d*x+c)^2+110*sin(d*x+c)+10 
7)/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.39 \[ \int \cos ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=-\frac {2 \, {\left (35 \, \cos \left (d x + c\right )^{5} - 5 \, \cos \left (d x + c\right )^{4} + 8 \, \cos \left (d x + c\right )^{3} - 16 \, \cos \left (d x + c\right )^{2} - {\left (35 \, \cos \left (d x + c\right )^{4} + 40 \, \cos \left (d x + c\right )^{3} + 48 \, \cos \left (d x + c\right )^{2} + 64 \, \cos \left (d x + c\right ) + 128\right )} \sin \left (d x + c\right ) + 64 \, \cos \left (d x + c\right ) + 128\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{315 \, {\left (d \cos \left (d x + c\right ) + d \sin \left (d x + c\right ) + d\right )}} \] Input:

integrate(cos(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

-2/315*(35*cos(d*x + c)^5 - 5*cos(d*x + c)^4 + 8*cos(d*x + c)^3 - 16*cos(d 
*x + c)^2 - (35*cos(d*x + c)^4 + 40*cos(d*x + c)^3 + 48*cos(d*x + c)^2 + 6 
4*cos(d*x + c) + 128)*sin(d*x + c) + 64*cos(d*x + c) + 128)*sqrt(a*sin(d*x 
 + c) + a)/(d*cos(d*x + c) + d*sin(d*x + c) + d)
 

Sympy [F]

\[ \int \cos ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int \sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )} \cos ^{4}{\left (c + d x \right )}\, dx \] Input:

integrate(cos(d*x+c)**4*(a+a*sin(d*x+c))**(1/2),x)
 

Output:

Integral(sqrt(a*(sin(c + d*x) + 1))*cos(c + d*x)**4, x)
 

Maxima [F]

\[ \int \cos ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int { \sqrt {a \sin \left (d x + c\right ) + a} \cos \left (d x + c\right )^{4} \,d x } \] Input:

integrate(cos(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(a*sin(d*x + c) + a)*cos(d*x + c)^4, x)
 

Giac [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.55 \[ \int \cos ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {\sqrt {2} {\left (1890 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 420 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {3}{4} \, \pi + \frac {3}{2} \, d x + \frac {3}{2} \, c\right ) - 252 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {5}{4} \, \pi + \frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 45 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {7}{4} \, \pi + \frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 35 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {9}{4} \, \pi + \frac {9}{2} \, d x + \frac {9}{2} \, c\right )\right )} \sqrt {a}}{2520 \, d} \] Input:

integrate(cos(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

1/2520*sqrt(2)*(1890*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*pi + 1/2 
*d*x + 1/2*c) - 420*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-3/4*pi + 3/2* 
d*x + 3/2*c) - 252*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-5/4*pi + 5/2*d 
*x + 5/2*c) + 45*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-7/4*pi + 7/2*d*x 
 + 7/2*c) + 35*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-9/4*pi + 9/2*d*x + 
 9/2*c))*sqrt(a)/d
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int {\cos \left (c+d\,x\right )}^4\,\sqrt {a+a\,\sin \left (c+d\,x\right )} \,d x \] Input:

int(cos(c + d*x)^4*(a + a*sin(c + d*x))^(1/2),x)
 

Output:

int(cos(c + d*x)^4*(a + a*sin(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \cos ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\sqrt {a}\, \left (\int \sqrt {\sin \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{4}d x \right ) \] Input:

int(cos(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x)
                                                                                    
                                                                                    
 

Output:

sqrt(a)*int(sqrt(sin(c + d*x) + 1)*cos(c + d*x)**4,x)