\(\int \frac {1}{(e \cos (c+d x))^{5/2} (a+a \sin (c+d x))} \, dx\) [241]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 112 \[ \int \frac {1}{(e \cos (c+d x))^{5/2} (a+a \sin (c+d x))} \, dx=\frac {10 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 a d e^2 \sqrt {e \cos (c+d x)}}+\frac {10 \sin (c+d x)}{21 a d e (e \cos (c+d x))^{3/2}}-\frac {2}{7 d e (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))} \] Output:

10/21*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/a/d/e^2/(e*c 
os(d*x+c))^(1/2)+10/21*sin(d*x+c)/a/d/e/(e*cos(d*x+c))^(3/2)-2/7/d/e/(e*co 
s(d*x+c))^(3/2)/(a+a*sin(d*x+c))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.05 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.59 \[ \int \frac {1}{(e \cos (c+d x))^{5/2} (a+a \sin (c+d x))} \, dx=\frac {\operatorname {Hypergeometric2F1}\left (-\frac {3}{4},\frac {11}{4},\frac {1}{4},\frac {1}{2} (1-\sin (c+d x))\right ) (1+\sin (c+d x))^{3/4}}{3\ 2^{3/4} a d e (e \cos (c+d x))^{3/2}} \] Input:

Integrate[1/((e*Cos[c + d*x])^(5/2)*(a + a*Sin[c + d*x])),x]
 

Output:

(Hypergeometric2F1[-3/4, 11/4, 1/4, (1 - Sin[c + d*x])/2]*(1 + Sin[c + d*x 
])^(3/4))/(3*2^(3/4)*a*d*e*(e*Cos[c + d*x])^(3/2))
 

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.02, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 3162, 3042, 3116, 3042, 3121, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a \sin (c+d x)+a) (e \cos (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(a \sin (c+d x)+a) (e \cos (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 3162

\(\displaystyle \frac {5 \int \frac {1}{(e \cos (c+d x))^{5/2}}dx}{7 a}-\frac {2}{7 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5 \int \frac {1}{\left (e \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx}{7 a}-\frac {2}{7 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {5 \left (\frac {\int \frac {1}{\sqrt {e \cos (c+d x)}}dx}{3 e^2}+\frac {2 \sin (c+d x)}{3 d e (e \cos (c+d x))^{3/2}}\right )}{7 a}-\frac {2}{7 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5 \left (\frac {\int \frac {1}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 e^2}+\frac {2 \sin (c+d x)}{3 d e (e \cos (c+d x))^{3/2}}\right )}{7 a}-\frac {2}{7 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {5 \left (\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 e^2 \sqrt {e \cos (c+d x)}}+\frac {2 \sin (c+d x)}{3 d e (e \cos (c+d x))^{3/2}}\right )}{7 a}-\frac {2}{7 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5 \left (\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 e^2 \sqrt {e \cos (c+d x)}}+\frac {2 \sin (c+d x)}{3 d e (e \cos (c+d x))^{3/2}}\right )}{7 a}-\frac {2}{7 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {5 \left (\frac {2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d e^2 \sqrt {e \cos (c+d x)}}+\frac {2 \sin (c+d x)}{3 d e (e \cos (c+d x))^{3/2}}\right )}{7 a}-\frac {2}{7 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{3/2}}\)

Input:

Int[1/((e*Cos[c + d*x])^(5/2)*(a + a*Sin[c + d*x])),x]
 

Output:

-2/(7*d*e*(e*Cos[c + d*x])^(3/2)*(a + a*Sin[c + d*x])) + (5*((2*Sqrt[Cos[c 
 + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*d*e^2*Sqrt[e*Cos[c + d*x]]) + (2*Si 
n[c + d*x])/(3*d*e*(e*Cos[c + d*x])^(3/2))))/(7*a)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3162
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[b*((g*Cos[e + f*x])^(p + 1)/(a*f*g*(p - 1)*(a + b*S 
in[e + f*x]))), x] + Simp[p/(a*(p - 1))   Int[(g*Cos[e + f*x])^p, x], x] /; 
 FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] &&  !GeQ[p, 1] && Intege 
rQ[2*p]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(374\) vs. \(2(99)=198\).

Time = 0.88 (sec) , antiderivative size = 375, normalized size of antiderivative = 3.35

method result size
default \(-\frac {2 \left (40 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+40 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-60 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-40 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+30 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+16 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \left (8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) a \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} e +e}\, e^{2} d}\) \(375\)

Input:

int(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

-2/21/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c) 
^2-1)/a/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)/e^2*(40*(2* 
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1 
/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^6+40*sin(1/2*d*x+1/2*c)^6*cos(1/ 
2*d*x+1/2*c)-60*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1 
/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4-40*sin(1/2* 
d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+30*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1 
/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1 
/2*c)^2+16*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-5*(sin(1/2*d*x+1/2*c)^2 
)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1 
/2))-3*sin(1/2*d*x+1/2*c))/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.58 \[ \int \frac {1}{(e \cos (c+d x))^{5/2} (a+a \sin (c+d x))} \, dx=-\frac {2 \, {\left (5 \, \sqrt {\frac {1}{2}} {\left (i \, \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) + i \, \cos \left (d x + c\right )^{2}\right )} \sqrt {e} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {\frac {1}{2}} {\left (-i \, \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) - i \, \cos \left (d x + c\right )^{2}\right )} \sqrt {e} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + \sqrt {e \cos \left (d x + c\right )} {\left (5 \, \cos \left (d x + c\right )^{2} - 5 \, \sin \left (d x + c\right ) - 2\right )}\right )}}{21 \, {\left (a d e^{3} \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) + a d e^{3} \cos \left (d x + c\right )^{2}\right )}} \] Input:

integrate(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c)),x, algorithm="fricas")
 

Output:

-2/21*(5*sqrt(1/2)*(I*cos(d*x + c)^2*sin(d*x + c) + I*cos(d*x + c)^2)*sqrt 
(e)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*sqrt(1/2 
)*(-I*cos(d*x + c)^2*sin(d*x + c) - I*cos(d*x + c)^2)*sqrt(e)*weierstrassP 
Inverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + sqrt(e*cos(d*x + c))*(5*co 
s(d*x + c)^2 - 5*sin(d*x + c) - 2))/(a*d*e^3*cos(d*x + c)^2*sin(d*x + c) + 
 a*d*e^3*cos(d*x + c)^2)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(e \cos (c+d x))^{5/2} (a+a \sin (c+d x))} \, dx=\text {Timed out} \] Input:

integrate(1/(e*cos(d*x+c))**(5/2)/(a+a*sin(d*x+c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {1}{(e \cos (c+d x))^{5/2} (a+a \sin (c+d x))} \, dx=\int { \frac {1}{\left (e \cos \left (d x + c\right )\right )^{\frac {5}{2}} {\left (a \sin \left (d x + c\right ) + a\right )}} \,d x } \] Input:

integrate(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c)),x, algorithm="maxima")
 

Output:

integrate(1/((e*cos(d*x + c))^(5/2)*(a*sin(d*x + c) + a)), x)
 

Giac [F]

\[ \int \frac {1}{(e \cos (c+d x))^{5/2} (a+a \sin (c+d x))} \, dx=\int { \frac {1}{\left (e \cos \left (d x + c\right )\right )^{\frac {5}{2}} {\left (a \sin \left (d x + c\right ) + a\right )}} \,d x } \] Input:

integrate(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c)),x, algorithm="giac")
 

Output:

integrate(1/((e*cos(d*x + c))^(5/2)*(a*sin(d*x + c) + a)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(e \cos (c+d x))^{5/2} (a+a \sin (c+d x))} \, dx=\int \frac {1}{{\left (e\,\cos \left (c+d\,x\right )\right )}^{5/2}\,\left (a+a\,\sin \left (c+d\,x\right )\right )} \,d x \] Input:

int(1/((e*cos(c + d*x))^(5/2)*(a + a*sin(c + d*x))),x)
 

Output:

int(1/((e*cos(c + d*x))^(5/2)*(a + a*sin(c + d*x))), x)
 

Reduce [F]

\[ \int \frac {1}{(e \cos (c+d x))^{5/2} (a+a \sin (c+d x))} \, dx=\frac {\sqrt {e}\, \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3} \sin \left (d x +c \right )+\cos \left (d x +c \right )^{3}}d x \right )}{a \,e^{3}} \] Input:

int(1/(e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c)),x)
 

Output:

(sqrt(e)*int(sqrt(cos(c + d*x))/(cos(c + d*x)**3*sin(c + d*x) + cos(c + d* 
x)**3),x))/(a*e**3)