\(\int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4} \, dx\) [271]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 191 \[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4} \, dx=\frac {2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{33 a^4 d \sqrt {e \cos (c+d x)}}-\frac {2 \sqrt {e \cos (c+d x)}}{15 d e (a+a \sin (c+d x))^4}-\frac {14 \sqrt {e \cos (c+d x)}}{165 a d e (a+a \sin (c+d x))^3}-\frac {2 \sqrt {e \cos (c+d x)}}{33 d e \left (a^2+a^2 \sin (c+d x)\right )^2}-\frac {2 \sqrt {e \cos (c+d x)}}{33 d e \left (a^4+a^4 \sin (c+d x)\right )} \] Output:

2/33*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/a^4/d/(e*cos( 
d*x+c))^(1/2)-2/15*(e*cos(d*x+c))^(1/2)/d/e/(a+a*sin(d*x+c))^4-14/165*(e*c 
os(d*x+c))^(1/2)/a/d/e/(a+a*sin(d*x+c))^3-2/33*(e*cos(d*x+c))^(1/2)/d/e/(a 
^2+a^2*sin(d*x+c))^2-2/33*(e*cos(d*x+c))^(1/2)/d/e/(a^4+a^4*sin(d*x+c))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.08 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.35 \[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4} \, dx=-\frac {\sqrt {e \cos (c+d x)} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {19}{4},\frac {5}{4},\frac {1}{2} (1-\sin (c+d x))\right )}{4\ 2^{3/4} a^4 d e \sqrt [4]{1+\sin (c+d x)}} \] Input:

Integrate[1/(Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])^4),x]
 

Output:

-1/4*(Sqrt[e*Cos[c + d*x]]*Hypergeometric2F1[1/4, 19/4, 5/4, (1 - Sin[c + 
d*x])/2])/(2^(3/4)*a^4*d*e*(1 + Sin[c + d*x])^(1/4))
 

Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.07, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 3160, 3042, 3160, 3042, 3160, 3042, 3162, 3042, 3121, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a \sin (c+d x)+a)^4 \sqrt {e \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(a \sin (c+d x)+a)^4 \sqrt {e \cos (c+d x)}}dx\)

\(\Big \downarrow \) 3160

\(\displaystyle \frac {7 \int \frac {1}{\sqrt {e \cos (c+d x)} (\sin (c+d x) a+a)^3}dx}{15 a}-\frac {2 \sqrt {e \cos (c+d x)}}{15 d e (a \sin (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \int \frac {1}{\sqrt {e \cos (c+d x)} (\sin (c+d x) a+a)^3}dx}{15 a}-\frac {2 \sqrt {e \cos (c+d x)}}{15 d e (a \sin (c+d x)+a)^4}\)

\(\Big \downarrow \) 3160

\(\displaystyle \frac {7 \left (\frac {5 \int \frac {1}{\sqrt {e \cos (c+d x)} (\sin (c+d x) a+a)^2}dx}{11 a}-\frac {2 \sqrt {e \cos (c+d x)}}{11 d e (a \sin (c+d x)+a)^3}\right )}{15 a}-\frac {2 \sqrt {e \cos (c+d x)}}{15 d e (a \sin (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \left (\frac {5 \int \frac {1}{\sqrt {e \cos (c+d x)} (\sin (c+d x) a+a)^2}dx}{11 a}-\frac {2 \sqrt {e \cos (c+d x)}}{11 d e (a \sin (c+d x)+a)^3}\right )}{15 a}-\frac {2 \sqrt {e \cos (c+d x)}}{15 d e (a \sin (c+d x)+a)^4}\)

\(\Big \downarrow \) 3160

\(\displaystyle \frac {7 \left (\frac {5 \left (\frac {3 \int \frac {1}{\sqrt {e \cos (c+d x)} (\sin (c+d x) a+a)}dx}{7 a}-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a \sin (c+d x)+a)^2}\right )}{11 a}-\frac {2 \sqrt {e \cos (c+d x)}}{11 d e (a \sin (c+d x)+a)^3}\right )}{15 a}-\frac {2 \sqrt {e \cos (c+d x)}}{15 d e (a \sin (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \left (\frac {5 \left (\frac {3 \int \frac {1}{\sqrt {e \cos (c+d x)} (\sin (c+d x) a+a)}dx}{7 a}-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a \sin (c+d x)+a)^2}\right )}{11 a}-\frac {2 \sqrt {e \cos (c+d x)}}{11 d e (a \sin (c+d x)+a)^3}\right )}{15 a}-\frac {2 \sqrt {e \cos (c+d x)}}{15 d e (a \sin (c+d x)+a)^4}\)

\(\Big \downarrow \) 3162

\(\displaystyle \frac {7 \left (\frac {5 \left (\frac {3 \left (\frac {\int \frac {1}{\sqrt {e \cos (c+d x)}}dx}{3 a}-\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a \sin (c+d x)+a)}\right )}{7 a}-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a \sin (c+d x)+a)^2}\right )}{11 a}-\frac {2 \sqrt {e \cos (c+d x)}}{11 d e (a \sin (c+d x)+a)^3}\right )}{15 a}-\frac {2 \sqrt {e \cos (c+d x)}}{15 d e (a \sin (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \left (\frac {5 \left (\frac {3 \left (\frac {\int \frac {1}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a}-\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a \sin (c+d x)+a)}\right )}{7 a}-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a \sin (c+d x)+a)^2}\right )}{11 a}-\frac {2 \sqrt {e \cos (c+d x)}}{11 d e (a \sin (c+d x)+a)^3}\right )}{15 a}-\frac {2 \sqrt {e \cos (c+d x)}}{15 d e (a \sin (c+d x)+a)^4}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {7 \left (\frac {5 \left (\frac {3 \left (\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 a \sqrt {e \cos (c+d x)}}-\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a \sin (c+d x)+a)}\right )}{7 a}-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a \sin (c+d x)+a)^2}\right )}{11 a}-\frac {2 \sqrt {e \cos (c+d x)}}{11 d e (a \sin (c+d x)+a)^3}\right )}{15 a}-\frac {2 \sqrt {e \cos (c+d x)}}{15 d e (a \sin (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \left (\frac {5 \left (\frac {3 \left (\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a \sqrt {e \cos (c+d x)}}-\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a \sin (c+d x)+a)}\right )}{7 a}-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a \sin (c+d x)+a)^2}\right )}{11 a}-\frac {2 \sqrt {e \cos (c+d x)}}{11 d e (a \sin (c+d x)+a)^3}\right )}{15 a}-\frac {2 \sqrt {e \cos (c+d x)}}{15 d e (a \sin (c+d x)+a)^4}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {7 \left (\frac {5 \left (\frac {3 \left (\frac {2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d \sqrt {e \cos (c+d x)}}-\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a \sin (c+d x)+a)}\right )}{7 a}-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a \sin (c+d x)+a)^2}\right )}{11 a}-\frac {2 \sqrt {e \cos (c+d x)}}{11 d e (a \sin (c+d x)+a)^3}\right )}{15 a}-\frac {2 \sqrt {e \cos (c+d x)}}{15 d e (a \sin (c+d x)+a)^4}\)

Input:

Int[1/(Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])^4),x]
 

Output:

(-2*Sqrt[e*Cos[c + d*x]])/(15*d*e*(a + a*Sin[c + d*x])^4) + (7*((-2*Sqrt[e 
*Cos[c + d*x]])/(11*d*e*(a + a*Sin[c + d*x])^3) + (5*((-2*Sqrt[e*Cos[c + d 
*x]])/(7*d*e*(a + a*Sin[c + d*x])^2) + (3*((2*Sqrt[Cos[c + d*x]]*EllipticF 
[(c + d*x)/2, 2])/(3*a*d*Sqrt[e*Cos[c + d*x]]) - (2*Sqrt[e*Cos[c + d*x]])/ 
(3*d*e*(a + a*Sin[c + d*x]))))/(7*a)))/(11*a)))/(15*a)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3160
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x 
])^m/(a*f*g*(2*m + p + 1))), x] + Simp[(m + p + 1)/(a*(2*m + p + 1))   Int[ 
(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, 
f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] & 
& IntegersQ[2*m, 2*p]
 

rule 3162
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[b*((g*Cos[e + f*x])^(p + 1)/(a*f*g*(p - 1)*(a + b*S 
in[e + f*x]))), x] + Simp[p/(a*(p - 1))   Int[(g*Cos[e + f*x])^p, x], x] /; 
 FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] &&  !GeQ[p, 1] && Intege 
rQ[2*p]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(761\) vs. \(2(170)=340\).

Time = 7.21 (sec) , antiderivative size = 762, normalized size of antiderivative = 3.99

method result size
default \(\text {Expression too large to display}\) \(762\)

Input:

int(1/(e*cos(d*x+c))^(1/2)/(a+a*sin(d*x+c))^4,x,method=_RETURNVERBOSE)
 

Output:

-2/165/(128*sin(1/2*d*x+1/2*c)^14-448*sin(1/2*d*x+1/2*c)^12+672*sin(1/2*d* 
x+1/2*c)^10-560*sin(1/2*d*x+1/2*c)^8+280*sin(1/2*d*x+1/2*c)^6-84*sin(1/2*d 
*x+1/2*c)^4+14*sin(1/2*d*x+1/2*c)^2-1)/a^4/sin(1/2*d*x+1/2*c)/(-2*sin(1/2* 
d*x+1/2*c)^2*e+e)^(1/2)*(640*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(co 
s(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^ 
14+640*sin(1/2*d*x+1/2*c)^14*cos(1/2*d*x+1/2*c)-2240*(2*sin(1/2*d*x+1/2*c) 
^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^( 
1/2)*sin(1/2*d*x+1/2*c)^12-1920*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^12+3 
360*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Elliptic 
F(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^10+2496*sin(1/2*d*x+1/2*c 
)^10*cos(1/2*d*x+1/2*c)-2800*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x 
+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^ 
8-1792*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8+1400*(2*sin(1/2*d*x+1/2*c)^ 
2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/ 
2))*sin(1/2*d*x+1/2*c)^6+616*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-420*( 
2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos 
(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4-40*sin(1/2*d*x+1/2*c)^4*cos( 
1/2*d*x+1/2*c)+70*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^ 
(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+240*sin(1 
/2*d*x+1/2*c)^5+160*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-5*(sin(1/2*...
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.12 (sec) , antiderivative size = 250, normalized size of antiderivative = 1.31 \[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4} \, dx=\frac {2 \, {\left (5 \, \sqrt {\frac {1}{2}} {\left (-i \, \cos \left (d x + c\right )^{4} + 8 i \, \cos \left (d x + c\right )^{2} + 4 \, {\left (i \, \cos \left (d x + c\right )^{2} - 2 i\right )} \sin \left (d x + c\right ) - 8 i\right )} \sqrt {e} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {\frac {1}{2}} {\left (i \, \cos \left (d x + c\right )^{4} - 8 i \, \cos \left (d x + c\right )^{2} + 4 \, {\left (-i \, \cos \left (d x + c\right )^{2} + 2 i\right )} \sin \left (d x + c\right ) + 8 i\right )} \sqrt {e} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + \sqrt {e \cos \left (d x + c\right )} {\left (20 \, \cos \left (d x + c\right )^{2} + {\left (5 \, \cos \left (d x + c\right )^{2} - 37\right )} \sin \left (d x + c\right ) - 48\right )}\right )}}{165 \, {\left (a^{4} d e \cos \left (d x + c\right )^{4} - 8 \, a^{4} d e \cos \left (d x + c\right )^{2} + 8 \, a^{4} d e - 4 \, {\left (a^{4} d e \cos \left (d x + c\right )^{2} - 2 \, a^{4} d e\right )} \sin \left (d x + c\right )\right )}} \] Input:

integrate(1/(e*cos(d*x+c))^(1/2)/(a+a*sin(d*x+c))^4,x, algorithm="fricas")
 

Output:

2/165*(5*sqrt(1/2)*(-I*cos(d*x + c)^4 + 8*I*cos(d*x + c)^2 + 4*(I*cos(d*x 
+ c)^2 - 2*I)*sin(d*x + c) - 8*I)*sqrt(e)*weierstrassPInverse(-4, 0, cos(d 
*x + c) + I*sin(d*x + c)) + 5*sqrt(1/2)*(I*cos(d*x + c)^4 - 8*I*cos(d*x + 
c)^2 + 4*(-I*cos(d*x + c)^2 + 2*I)*sin(d*x + c) + 8*I)*sqrt(e)*weierstrass 
PInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + sqrt(e*cos(d*x + c))*(20* 
cos(d*x + c)^2 + (5*cos(d*x + c)^2 - 37)*sin(d*x + c) - 48))/(a^4*d*e*cos( 
d*x + c)^4 - 8*a^4*d*e*cos(d*x + c)^2 + 8*a^4*d*e - 4*(a^4*d*e*cos(d*x + c 
)^2 - 2*a^4*d*e)*sin(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4} \, dx=\text {Timed out} \] Input:

integrate(1/(e*cos(d*x+c))**(1/2)/(a+a*sin(d*x+c))**4,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4} \, dx=\int { \frac {1}{\sqrt {e \cos \left (d x + c\right )} {\left (a \sin \left (d x + c\right ) + a\right )}^{4}} \,d x } \] Input:

integrate(1/(e*cos(d*x+c))^(1/2)/(a+a*sin(d*x+c))^4,x, algorithm="maxima")
 

Output:

integrate(1/(sqrt(e*cos(d*x + c))*(a*sin(d*x + c) + a)^4), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4} \, dx=\int { \frac {1}{\sqrt {e \cos \left (d x + c\right )} {\left (a \sin \left (d x + c\right ) + a\right )}^{4}} \,d x } \] Input:

integrate(1/(e*cos(d*x+c))^(1/2)/(a+a*sin(d*x+c))^4,x, algorithm="giac")
 

Output:

integrate(1/(sqrt(e*cos(d*x + c))*(a*sin(d*x + c) + a)^4), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4} \, dx=\int \frac {1}{\sqrt {e\,\cos \left (c+d\,x\right )}\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^4} \,d x \] Input:

int(1/((e*cos(c + d*x))^(1/2)*(a + a*sin(c + d*x))^4),x)
 

Output:

int(1/((e*cos(c + d*x))^(1/2)*(a + a*sin(c + d*x))^4), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4} \, dx=\frac {\sqrt {e}\, \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right ) \sin \left (d x +c \right )^{4}+4 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3}+6 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2}+4 \cos \left (d x +c \right ) \sin \left (d x +c \right )+\cos \left (d x +c \right )}d x \right )}{a^{4} e} \] Input:

int(1/(e*cos(d*x+c))^(1/2)/(a+a*sin(d*x+c))^4,x)
 

Output:

(sqrt(e)*int(sqrt(cos(c + d*x))/(cos(c + d*x)*sin(c + d*x)**4 + 4*cos(c + 
d*x)*sin(c + d*x)**3 + 6*cos(c + d*x)*sin(c + d*x)**2 + 4*cos(c + d*x)*sin 
(c + d*x) + cos(c + d*x)),x))/(a**4*e)