\(\int \frac {(e \cos (c+d x))^p}{(a+a \sin (c+d x))^3} \, dx\) [332]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 93 \[ \int \frac {(e \cos (c+d x))^p}{(a+a \sin (c+d x))^3} \, dx=-\frac {2^{\frac {1}{2} (-5+p)} (e \cos (c+d x))^{1+p} \operatorname {Hypergeometric2F1}\left (\frac {7-p}{2},\frac {1+p}{2},\frac {3+p}{2},\frac {1}{2} (1-\sin (c+d x))\right ) (1+\sin (c+d x))^{\frac {1}{2} (-1-p)}}{a^3 d e (1+p)} \] Output:

-2^(-5/2+1/2*p)*(e*cos(d*x+c))^(p+1)*hypergeom([1/2*p+1/2, 7/2-1/2*p],[3/2 
+1/2*p],1/2-1/2*sin(d*x+c))*(1+sin(d*x+c))^(-1/2-1/2*p)/a^3/d/e/(p+1)
 

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.01 \[ \int \frac {(e \cos (c+d x))^p}{(a+a \sin (c+d x))^3} \, dx=-\frac {2^{\frac {1}{2} (-5+p)} \cos (c+d x) (e \cos (c+d x))^p \operatorname {Hypergeometric2F1}\left (\frac {7-p}{2},\frac {1+p}{2},\frac {3+p}{2},\frac {1}{2} (1-\sin (c+d x))\right ) (1+\sin (c+d x))^{\frac {1}{2} (-1-p)}}{a^3 d (1+p)} \] Input:

Integrate[(e*Cos[c + d*x])^p/(a + a*Sin[c + d*x])^3,x]
 

Output:

-((2^((-5 + p)/2)*Cos[c + d*x]*(e*Cos[c + d*x])^p*Hypergeometric2F1[(7 - p 
)/2, (1 + p)/2, (3 + p)/2, (1 - Sin[c + d*x])/2]*(1 + Sin[c + d*x])^((-1 - 
 p)/2))/(a^3*d*(1 + p)))
 

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.30, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3042, 3167, 79}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \cos (c+d x))^p}{(a \sin (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(e \cos (c+d x))^p}{(a \sin (c+d x)+a)^3}dx\)

\(\Big \downarrow \) 3167

\(\displaystyle \frac {(1-\sin (c+d x))^{\frac {1}{2} (-p-1)} (\sin (c+d x)+1)^{\frac {1}{2} (-p-1)} (e \cos (c+d x))^{p+1} \int (1-\sin (c+d x))^{\frac {p-1}{2}} (\sin (c+d x)+1)^{\frac {p-7}{2}}d\sin (c+d x)}{a^3 d e}\)

\(\Big \downarrow \) 79

\(\displaystyle -\frac {2^{\frac {p-5}{2}} (1-\sin (c+d x))^{\frac {1}{2} (-p-1)+\frac {p+1}{2}} (\sin (c+d x)+1)^{\frac {1}{2} (-p-1)} (e \cos (c+d x))^{p+1} \operatorname {Hypergeometric2F1}\left (\frac {7-p}{2},\frac {p+1}{2},\frac {p+3}{2},\frac {1}{2} (1-\sin (c+d x))\right )}{a^3 d e (p+1)}\)

Input:

Int[(e*Cos[c + d*x])^p/(a + a*Sin[c + d*x])^3,x]
 

Output:

-((2^((-5 + p)/2)*(e*Cos[c + d*x])^(1 + p)*Hypergeometric2F1[(7 - p)/2, (1 
 + p)/2, (3 + p)/2, (1 - Sin[c + d*x])/2]*(1 - Sin[c + d*x])^((-1 - p)/2 + 
 (1 + p)/2)*(1 + Sin[c + d*x])^((-1 - p)/2))/(a^3*d*e*(1 + p)))
 

Defintions of rubi rules used

rule 79
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(( 
a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c - a*d))^n))*Hypergeometric2F1[-n, m + 1 
, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}, x] 
&&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] 
 ||  !(RationalQ[n] && GtQ[-d/(b*c - a*d), 0]))
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3167
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_.), x_Symbol] :> Simp[a^m*((g*Cos[e + f*x])^(p + 1)/(f*g*(1 + Sin[e 
 + f*x])^((p + 1)/2)*(1 - Sin[e + f*x])^((p + 1)/2)))   Subst[Int[(1 + (b/a 
)*x)^(m + (p - 1)/2)*(1 - (b/a)*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; 
 FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m]
 
Maple [F]

\[\int \frac {\left (e \cos \left (d x +c \right )\right )^{p}}{\left (a +a \sin \left (d x +c \right )\right )^{3}}d x\]

Input:

int((e*cos(d*x+c))^p/(a+a*sin(d*x+c))^3,x)
 

Output:

int((e*cos(d*x+c))^p/(a+a*sin(d*x+c))^3,x)
 

Fricas [F]

\[ \int \frac {(e \cos (c+d x))^p}{(a+a \sin (c+d x))^3} \, dx=\int { \frac {\left (e \cos \left (d x + c\right )\right )^{p}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate((e*cos(d*x+c))^p/(a+a*sin(d*x+c))^3,x, algorithm="fricas")
 

Output:

integral(-(e*cos(d*x + c))^p/(3*a^3*cos(d*x + c)^2 - 4*a^3 + (a^3*cos(d*x 
+ c)^2 - 4*a^3)*sin(d*x + c)), x)
 

Sympy [F]

\[ \int \frac {(e \cos (c+d x))^p}{(a+a \sin (c+d x))^3} \, dx=\frac {\int \frac {\left (e \cos {\left (c + d x \right )}\right )^{p}}{\sin ^{3}{\left (c + d x \right )} + 3 \sin ^{2}{\left (c + d x \right )} + 3 \sin {\left (c + d x \right )} + 1}\, dx}{a^{3}} \] Input:

integrate((e*cos(d*x+c))**p/(a+a*sin(d*x+c))**3,x)
 

Output:

Integral((e*cos(c + d*x))**p/(sin(c + d*x)**3 + 3*sin(c + d*x)**2 + 3*sin( 
c + d*x) + 1), x)/a**3
 

Maxima [F]

\[ \int \frac {(e \cos (c+d x))^p}{(a+a \sin (c+d x))^3} \, dx=\int { \frac {\left (e \cos \left (d x + c\right )\right )^{p}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate((e*cos(d*x+c))^p/(a+a*sin(d*x+c))^3,x, algorithm="maxima")
 

Output:

integrate((e*cos(d*x + c))^p/(a*sin(d*x + c) + a)^3, x)
 

Giac [F]

\[ \int \frac {(e \cos (c+d x))^p}{(a+a \sin (c+d x))^3} \, dx=\int { \frac {\left (e \cos \left (d x + c\right )\right )^{p}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate((e*cos(d*x+c))^p/(a+a*sin(d*x+c))^3,x, algorithm="giac")
 

Output:

integrate((e*cos(d*x + c))^p/(a*sin(d*x + c) + a)^3, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^p}{(a+a \sin (c+d x))^3} \, dx=\int \frac {{\left (e\,\cos \left (c+d\,x\right )\right )}^p}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^3} \,d x \] Input:

int((e*cos(c + d*x))^p/(a + a*sin(c + d*x))^3,x)
 

Output:

int((e*cos(c + d*x))^p/(a + a*sin(c + d*x))^3, x)
 

Reduce [F]

\[ \int \frac {(e \cos (c+d x))^p}{(a+a \sin (c+d x))^3} \, dx=\frac {e^{p} \left (\int \frac {\cos \left (d x +c \right )^{p}}{\sin \left (d x +c \right )^{3}+3 \sin \left (d x +c \right )^{2}+3 \sin \left (d x +c \right )+1}d x \right )}{a^{3}} \] Input:

int((e*cos(d*x+c))^p/(a+a*sin(d*x+c))^3,x)
 

Output:

(e**p*int(cos(c + d*x)**p/(sin(c + d*x)**3 + 3*sin(c + d*x)**2 + 3*sin(c + 
 d*x) + 1),x))/a**3