\(\int (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))^2 \, dx\) [545]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 149 \[ \int (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))^2 \, dx=-\frac {22 a b (e \cos (c+d x))^{7/2}}{63 d e}+\frac {2 \left (9 a^2+2 b^2\right ) e^2 \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d \sqrt {\cos (c+d x)}}+\frac {2 \left (9 a^2+2 b^2\right ) e (e \cos (c+d x))^{3/2} \sin (c+d x)}{45 d}-\frac {2 b (e \cos (c+d x))^{7/2} (a+b \sin (c+d x))}{9 d e} \] Output:

-22/63*a*b*(e*cos(d*x+c))^(7/2)/d/e+2/15*(9*a^2+2*b^2)*e^2*(e*cos(d*x+c))^ 
(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x+c)^(1/2)+2/45*(9*a^2 
+2*b^2)*e*(e*cos(d*x+c))^(3/2)*sin(d*x+c)/d-2/9*b*(e*cos(d*x+c))^(7/2)*(a+ 
b*sin(d*x+c))/d/e
 

Mathematica [A] (verified)

Time = 1.51 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.76 \[ \int (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))^2 \, dx=\frac {(e \cos (c+d x))^{5/2} \left (84 \left (9 a^2+2 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\cos ^{\frac {3}{2}}(c+d x) \left (-180 a b \cos (2 (c+d x))+21 \left (12 a^2+b^2\right ) \sin (c+d x)-5 b (36 a+7 b \sin (3 (c+d x)))\right )\right )}{630 d \cos ^{\frac {5}{2}}(c+d x)} \] Input:

Integrate[(e*Cos[c + d*x])^(5/2)*(a + b*Sin[c + d*x])^2,x]
 

Output:

((e*Cos[c + d*x])^(5/2)*(84*(9*a^2 + 2*b^2)*EllipticE[(c + d*x)/2, 2] + Co 
s[c + d*x]^(3/2)*(-180*a*b*Cos[2*(c + d*x)] + 21*(12*a^2 + b^2)*Sin[c + d* 
x] - 5*b*(36*a + 7*b*Sin[3*(c + d*x)]))))/(630*d*Cos[c + d*x]^(5/2))
 

Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.97, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {3042, 3171, 27, 3042, 3148, 3042, 3115, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))^2dx\)

\(\Big \downarrow \) 3171

\(\displaystyle \frac {2}{9} \int \frac {1}{2} (e \cos (c+d x))^{5/2} \left (9 a^2+11 b \sin (c+d x) a+2 b^2\right )dx-\frac {2 b (e \cos (c+d x))^{7/2} (a+b \sin (c+d x))}{9 d e}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \int (e \cos (c+d x))^{5/2} \left (9 a^2+11 b \sin (c+d x) a+2 b^2\right )dx-\frac {2 b (e \cos (c+d x))^{7/2} (a+b \sin (c+d x))}{9 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \int (e \cos (c+d x))^{5/2} \left (9 a^2+11 b \sin (c+d x) a+2 b^2\right )dx-\frac {2 b (e \cos (c+d x))^{7/2} (a+b \sin (c+d x))}{9 d e}\)

\(\Big \downarrow \) 3148

\(\displaystyle \frac {1}{9} \left (\left (9 a^2+2 b^2\right ) \int (e \cos (c+d x))^{5/2}dx-\frac {22 a b (e \cos (c+d x))^{7/2}}{7 d e}\right )-\frac {2 b (e \cos (c+d x))^{7/2} (a+b \sin (c+d x))}{9 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\left (9 a^2+2 b^2\right ) \int \left (e \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}dx-\frac {22 a b (e \cos (c+d x))^{7/2}}{7 d e}\right )-\frac {2 b (e \cos (c+d x))^{7/2} (a+b \sin (c+d x))}{9 d e}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {1}{9} \left (\left (9 a^2+2 b^2\right ) \left (\frac {3}{5} e^2 \int \sqrt {e \cos (c+d x)}dx+\frac {2 e \sin (c+d x) (e \cos (c+d x))^{3/2}}{5 d}\right )-\frac {22 a b (e \cos (c+d x))^{7/2}}{7 d e}\right )-\frac {2 b (e \cos (c+d x))^{7/2} (a+b \sin (c+d x))}{9 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\left (9 a^2+2 b^2\right ) \left (\frac {3}{5} e^2 \int \sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 e \sin (c+d x) (e \cos (c+d x))^{3/2}}{5 d}\right )-\frac {22 a b (e \cos (c+d x))^{7/2}}{7 d e}\right )-\frac {2 b (e \cos (c+d x))^{7/2} (a+b \sin (c+d x))}{9 d e}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {1}{9} \left (\left (9 a^2+2 b^2\right ) \left (\frac {3 e^2 \sqrt {e \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{5 \sqrt {\cos (c+d x)}}+\frac {2 e \sin (c+d x) (e \cos (c+d x))^{3/2}}{5 d}\right )-\frac {22 a b (e \cos (c+d x))^{7/2}}{7 d e}\right )-\frac {2 b (e \cos (c+d x))^{7/2} (a+b \sin (c+d x))}{9 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\left (9 a^2+2 b^2\right ) \left (\frac {3 e^2 \sqrt {e \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{5 \sqrt {\cos (c+d x)}}+\frac {2 e \sin (c+d x) (e \cos (c+d x))^{3/2}}{5 d}\right )-\frac {22 a b (e \cos (c+d x))^{7/2}}{7 d e}\right )-\frac {2 b (e \cos (c+d x))^{7/2} (a+b \sin (c+d x))}{9 d e}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{9} \left (\left (9 a^2+2 b^2\right ) \left (\frac {6 e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \cos (c+d x)}}{5 d \sqrt {\cos (c+d x)}}+\frac {2 e \sin (c+d x) (e \cos (c+d x))^{3/2}}{5 d}\right )-\frac {22 a b (e \cos (c+d x))^{7/2}}{7 d e}\right )-\frac {2 b (e \cos (c+d x))^{7/2} (a+b \sin (c+d x))}{9 d e}\)

Input:

Int[(e*Cos[c + d*x])^(5/2)*(a + b*Sin[c + d*x])^2,x]
 

Output:

(-2*b*(e*Cos[c + d*x])^(7/2)*(a + b*Sin[c + d*x]))/(9*d*e) + ((-22*a*b*(e* 
Cos[c + d*x])^(7/2))/(7*d*e) + (9*a^2 + 2*b^2)*((6*e^2*Sqrt[e*Cos[c + d*x] 
]*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c + d*x]]) + (2*e*(e*Cos[c + d* 
x])^(3/2)*Sin[c + d*x])/(5*d)))/9
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3148
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[(-b)*((g*Cos[e + f*x])^(p + 1)/(f*g*(p + 1))), x] + 
 Simp[a   Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x] && 
 (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])
 

rule 3171
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(-b)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + 
f*x])^(m - 1)/(f*g*(m + p))), x] + Simp[1/(m + p)   Int[(g*Cos[e + f*x])^p* 
(a + b*Sin[e + f*x])^(m - 2)*(b^2*(m - 1) + a^2*(m + p) + a*b*(2*m + p - 1) 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] 
 && GtQ[m, 1] && NeQ[m + p, 0] && (IntegersQ[2*m, 2*p] || IntegerQ[m])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(407\) vs. \(2(133)=266\).

Time = 12.16 (sec) , antiderivative size = 408, normalized size of antiderivative = 2.74

method result size
default \(-\frac {2 e^{3} \left (1120 b^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{10} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2240 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} b^{2}+1440 a b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-504 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} a^{2}+1568 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} b^{2}-2880 a b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+504 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a^{2}-448 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b^{2}+2160 a b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-126 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a^{2}+42 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b^{2}-189 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-42 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}-720 a b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+90 a b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{315 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} e +e}\, d}\) \(408\)
parts \(-\frac {2 a^{2} \sqrt {e \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, e^{3} \left (-8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-e \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {e \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}\, d}+\frac {4 b^{2} \sqrt {e \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, e^{3} \left (80 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}-240 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}+272 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}-144 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+35 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{45 \sqrt {-e \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {e \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}\, d}-\frac {4 a b \left (e \cos \left (d x +c \right )\right )^{\frac {7}{2}}}{7 d e}\) \(462\)

Input:

int((e*cos(d*x+c))^(5/2)*(a+b*sin(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

-2/315/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*e^3*(1120*b^ 
2*sin(1/2*d*x+1/2*c)^10*cos(1/2*d*x+1/2*c)-2240*cos(1/2*d*x+1/2*c)*sin(1/2 
*d*x+1/2*c)^8*b^2+1440*a*b*sin(1/2*d*x+1/2*c)^9-504*cos(1/2*d*x+1/2*c)*sin 
(1/2*d*x+1/2*c)^6*a^2+1568*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6*b^2-288 
0*a*b*sin(1/2*d*x+1/2*c)^7+504*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a^2 
-448*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*b^2+2160*a*b*sin(1/2*d*x+1/2* 
c)^5-126*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*a^2+42*cos(1/2*d*x+1/2*c) 
*sin(1/2*d*x+1/2*c)^2*b^2-189*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+ 
1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2-42*(sin(1/2*d* 
x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1 
/2*c),2^(1/2))*b^2-720*a*b*sin(1/2*d*x+1/2*c)^3+90*a*b*sin(1/2*d*x+1/2*c)) 
/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.12 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.07 \[ \int (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))^2 \, dx=-\frac {2 \, {\left (-21 i \, \sqrt {\frac {1}{2}} {\left (9 \, a^{2} + 2 \, b^{2}\right )} e^{\frac {5}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 i \, \sqrt {\frac {1}{2}} {\left (9 \, a^{2} + 2 \, b^{2}\right )} e^{\frac {5}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + {\left (90 \, a b e^{2} \cos \left (d x + c\right )^{3} + 7 \, {\left (5 \, b^{2} e^{2} \cos \left (d x + c\right )^{3} - {\left (9 \, a^{2} + 2 \, b^{2}\right )} e^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )\right )} \sqrt {e \cos \left (d x + c\right )}\right )}}{315 \, d} \] Input:

integrate((e*cos(d*x+c))^(5/2)*(a+b*sin(d*x+c))^2,x, algorithm="fricas")
 

Output:

-2/315*(-21*I*sqrt(1/2)*(9*a^2 + 2*b^2)*e^(5/2)*weierstrassZeta(-4, 0, wei 
erstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*I*sqrt(1/2)*( 
9*a^2 + 2*b^2)*e^(5/2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, c 
os(d*x + c) - I*sin(d*x + c))) + (90*a*b*e^2*cos(d*x + c)^3 + 7*(5*b^2*e^2 
*cos(d*x + c)^3 - (9*a^2 + 2*b^2)*e^2*cos(d*x + c))*sin(d*x + c))*sqrt(e*c 
os(d*x + c)))/d
 

Sympy [F(-1)]

Timed out. \[ \int (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))^2 \, dx=\text {Timed out} \] Input:

integrate((e*cos(d*x+c))**(5/2)*(a+b*sin(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))^2 \, dx=\int { \left (e \cos \left (d x + c\right )\right )^{\frac {5}{2}} {\left (b \sin \left (d x + c\right ) + a\right )}^{2} \,d x } \] Input:

integrate((e*cos(d*x+c))^(5/2)*(a+b*sin(d*x+c))^2,x, algorithm="maxima")
 

Output:

integrate((e*cos(d*x + c))^(5/2)*(b*sin(d*x + c) + a)^2, x)
 

Giac [F]

\[ \int (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))^2 \, dx=\int { \left (e \cos \left (d x + c\right )\right )^{\frac {5}{2}} {\left (b \sin \left (d x + c\right ) + a\right )}^{2} \,d x } \] Input:

integrate((e*cos(d*x+c))^(5/2)*(a+b*sin(d*x+c))^2,x, algorithm="giac")
 

Output:

integrate((e*cos(d*x + c))^(5/2)*(b*sin(d*x + c) + a)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))^2 \, dx=\int {\left (e\,\cos \left (c+d\,x\right )\right )}^{5/2}\,{\left (a+b\,\sin \left (c+d\,x\right )\right )}^2 \,d x \] Input:

int((e*cos(c + d*x))^(5/2)*(a + b*sin(c + d*x))^2,x)
                                                                                    
                                                                                    
 

Output:

int((e*cos(c + d*x))^(5/2)*(a + b*sin(c + d*x))^2, x)
 

Reduce [F]

\[ \int (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))^2 \, dx=\frac {\sqrt {e}\, e^{2} \left (-4 \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3} a b +7 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )^{2}d x \right ) b^{2} d +7 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) a^{2} d \right )}{7 d} \] Input:

int((e*cos(d*x+c))^(5/2)*(a+b*sin(d*x+c))^2,x)
 

Output:

(sqrt(e)*e**2*( - 4*sqrt(cos(c + d*x))*cos(c + d*x)**3*a*b + 7*int(sqrt(co 
s(c + d*x))*cos(c + d*x)**2*sin(c + d*x)**2,x)*b**2*d + 7*int(sqrt(cos(c + 
 d*x))*cos(c + d*x)**2,x)*a**2*d))/(7*d)