\(\int \frac {\cot ^4(e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx\) [106]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 135 \[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx=-\frac {7 \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{8 \sqrt {a} f}+\frac {9 \cot (e+f x)}{8 f \sqrt {a+a \sin (e+f x)}}+\frac {\cot (e+f x) \csc (e+f x)}{12 f \sqrt {a+a \sin (e+f x)}}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a+a \sin (e+f x)}} \] Output:

-7/8*arctanh(a^(1/2)*cos(f*x+e)/(a+a*sin(f*x+e))^(1/2))/a^(1/2)/f+9/8*cot( 
f*x+e)/f/(a+a*sin(f*x+e))^(1/2)+1/12*cot(f*x+e)*csc(f*x+e)/f/(a+a*sin(f*x+ 
e))^(1/2)-1/3*cot(f*x+e)*csc(f*x+e)^2/f/(a+a*sin(f*x+e))^(1/2)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(292\) vs. \(2(135)=270\).

Time = 1.32 (sec) , antiderivative size = 292, normalized size of antiderivative = 2.16 \[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx=\frac {\csc ^9\left (\frac {1}{2} (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (36 \cos \left (\frac {1}{2} (e+f x)\right )-46 \cos \left (\frac {3}{2} (e+f x)\right )-54 \cos \left (\frac {5}{2} (e+f x)\right )-36 \sin \left (\frac {1}{2} (e+f x)\right )-63 \log \left (1+\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sin (e+f x)+63 \log \left (1-\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sin (e+f x)-46 \sin \left (\frac {3}{2} (e+f x)\right )+54 \sin \left (\frac {5}{2} (e+f x)\right )+21 \log \left (1+\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sin (3 (e+f x))-21 \log \left (1-\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sin (3 (e+f x))\right )}{24 f \left (\csc ^2\left (\frac {1}{4} (e+f x)\right )-\sec ^2\left (\frac {1}{4} (e+f x)\right )\right )^3 \sqrt {a (1+\sin (e+f x))}} \] Input:

Integrate[Cot[e + f*x]^4/Sqrt[a + a*Sin[e + f*x]],x]
 

Output:

(Csc[(e + f*x)/2]^9*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(36*Cos[(e + f*x 
)/2] - 46*Cos[(3*(e + f*x))/2] - 54*Cos[(5*(e + f*x))/2] - 36*Sin[(e + f*x 
)/2] - 63*Log[1 + Cos[(e + f*x)/2] - Sin[(e + f*x)/2]]*Sin[e + f*x] + 63*L 
og[1 - Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]*Sin[e + f*x] - 46*Sin[(3*(e + 
f*x))/2] + 54*Sin[(5*(e + f*x))/2] + 21*Log[1 + Cos[(e + f*x)/2] - Sin[(e 
+ f*x)/2]]*Sin[3*(e + f*x)] - 21*Log[1 - Cos[(e + f*x)/2] + Sin[(e + f*x)/ 
2]]*Sin[3*(e + f*x)]))/(24*f*(Csc[(e + f*x)/4]^2 - Sec[(e + f*x)/4]^2)^3*S 
qrt[a*(1 + Sin[e + f*x])])
 

Rubi [A] (verified)

Time = 1.57 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.87, number of steps used = 21, number of rules used = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.870, Rules used = {3042, 3197, 3042, 3128, 219, 3523, 27, 3042, 3463, 27, 3042, 3463, 27, 3042, 3464, 3042, 3128, 219, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^4(e+f x)}{\sqrt {a \sin (e+f x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (e+f x)^4 \sqrt {a \sin (e+f x)+a}}dx\)

\(\Big \downarrow \) 3197

\(\displaystyle \int \frac {1}{\sqrt {\sin (e+f x) a+a}}dx+\int \frac {\csc ^4(e+f x) \left (1-2 \sin ^2(e+f x)\right )}{\sqrt {\sin (e+f x) a+a}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\sin (e+f x) a+a}}dx+\int \frac {1-2 \sin (e+f x)^2}{\sin (e+f x)^4 \sqrt {\sin (e+f x) a+a}}dx\)

\(\Big \downarrow \) 3128

\(\displaystyle \int \frac {1-2 \sin (e+f x)^2}{\sin (e+f x)^4 \sqrt {\sin (e+f x) a+a}}dx-\frac {2 \int \frac {1}{2 a-\frac {a^2 \cos ^2(e+f x)}{\sin (e+f x) a+a}}d\frac {a \cos (e+f x)}{\sqrt {\sin (e+f x) a+a}}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \int \frac {1-2 \sin (e+f x)^2}{\sin (e+f x)^4 \sqrt {\sin (e+f x) a+a}}dx-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {\int -\frac {\csc ^3(e+f x) (7 \sin (e+f x) a+a)}{2 \sqrt {\sin (e+f x) a+a}}dx}{3 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\csc ^3(e+f x) (7 \sin (e+f x) a+a)}{\sqrt {\sin (e+f x) a+a}}dx}{6 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {7 \sin (e+f x) a+a}{\sin (e+f x)^3 \sqrt {\sin (e+f x) a+a}}dx}{6 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3463

\(\displaystyle -\frac {\frac {\int \frac {3 \csc ^2(e+f x) \left (\sin (e+f x) a^2+9 a^2\right )}{2 \sqrt {\sin (e+f x) a+a}}dx}{2 a}-\frac {a \cot (e+f x) \csc (e+f x)}{2 f \sqrt {a \sin (e+f x)+a}}}{6 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {3 \int \frac {\csc ^2(e+f x) \left (\sin (e+f x) a^2+9 a^2\right )}{\sqrt {\sin (e+f x) a+a}}dx}{4 a}-\frac {a \cot (e+f x) \csc (e+f x)}{2 f \sqrt {a \sin (e+f x)+a}}}{6 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {3 \int \frac {\sin (e+f x) a^2+9 a^2}{\sin (e+f x)^2 \sqrt {\sin (e+f x) a+a}}dx}{4 a}-\frac {a \cot (e+f x) \csc (e+f x)}{2 f \sqrt {a \sin (e+f x)+a}}}{6 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3463

\(\displaystyle -\frac {\frac {3 \left (\frac {\int -\frac {\csc (e+f x) \left (7 a^3-9 a^3 \sin (e+f x)\right )}{2 \sqrt {\sin (e+f x) a+a}}dx}{a}-\frac {9 a^2 \cot (e+f x)}{f \sqrt {a \sin (e+f x)+a}}\right )}{4 a}-\frac {a \cot (e+f x) \csc (e+f x)}{2 f \sqrt {a \sin (e+f x)+a}}}{6 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {3 \left (-\frac {\int \frac {\csc (e+f x) \left (7 a^3-9 a^3 \sin (e+f x)\right )}{\sqrt {\sin (e+f x) a+a}}dx}{2 a}-\frac {9 a^2 \cot (e+f x)}{f \sqrt {a \sin (e+f x)+a}}\right )}{4 a}-\frac {a \cot (e+f x) \csc (e+f x)}{2 f \sqrt {a \sin (e+f x)+a}}}{6 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {3 \left (-\frac {\int \frac {7 a^3-9 a^3 \sin (e+f x)}{\sin (e+f x) \sqrt {\sin (e+f x) a+a}}dx}{2 a}-\frac {9 a^2 \cot (e+f x)}{f \sqrt {a \sin (e+f x)+a}}\right )}{4 a}-\frac {a \cot (e+f x) \csc (e+f x)}{2 f \sqrt {a \sin (e+f x)+a}}}{6 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3464

\(\displaystyle -\frac {\frac {3 \left (-\frac {7 a^2 \int \csc (e+f x) \sqrt {\sin (e+f x) a+a}dx-16 a^3 \int \frac {1}{\sqrt {\sin (e+f x) a+a}}dx}{2 a}-\frac {9 a^2 \cot (e+f x)}{f \sqrt {a \sin (e+f x)+a}}\right )}{4 a}-\frac {a \cot (e+f x) \csc (e+f x)}{2 f \sqrt {a \sin (e+f x)+a}}}{6 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {3 \left (-\frac {7 a^2 \int \frac {\sqrt {\sin (e+f x) a+a}}{\sin (e+f x)}dx-16 a^3 \int \frac {1}{\sqrt {\sin (e+f x) a+a}}dx}{2 a}-\frac {9 a^2 \cot (e+f x)}{f \sqrt {a \sin (e+f x)+a}}\right )}{4 a}-\frac {a \cot (e+f x) \csc (e+f x)}{2 f \sqrt {a \sin (e+f x)+a}}}{6 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3128

\(\displaystyle -\frac {\frac {3 \left (-\frac {7 a^2 \int \frac {\sqrt {\sin (e+f x) a+a}}{\sin (e+f x)}dx+\frac {32 a^3 \int \frac {1}{2 a-\frac {a^2 \cos ^2(e+f x)}{\sin (e+f x) a+a}}d\frac {a \cos (e+f x)}{\sqrt {\sin (e+f x) a+a}}}{f}}{2 a}-\frac {9 a^2 \cot (e+f x)}{f \sqrt {a \sin (e+f x)+a}}\right )}{4 a}-\frac {a \cot (e+f x) \csc (e+f x)}{2 f \sqrt {a \sin (e+f x)+a}}}{6 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {3 \left (-\frac {7 a^2 \int \frac {\sqrt {\sin (e+f x) a+a}}{\sin (e+f x)}dx+\frac {16 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{f}}{2 a}-\frac {9 a^2 \cot (e+f x)}{f \sqrt {a \sin (e+f x)+a}}\right )}{4 a}-\frac {a \cot (e+f x) \csc (e+f x)}{2 f \sqrt {a \sin (e+f x)+a}}}{6 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3252

\(\displaystyle -\frac {\frac {3 \left (-\frac {\frac {16 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{f}-\frac {14 a^3 \int \frac {1}{a-\frac {a^2 \cos ^2(e+f x)}{\sin (e+f x) a+a}}d\frac {a \cos (e+f x)}{\sqrt {\sin (e+f x) a+a}}}{f}}{2 a}-\frac {9 a^2 \cot (e+f x)}{f \sqrt {a \sin (e+f x)+a}}\right )}{4 a}-\frac {a \cot (e+f x) \csc (e+f x)}{2 f \sqrt {a \sin (e+f x)+a}}}{6 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {3 \left (-\frac {\frac {16 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{f}-\frac {14 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {a \sin (e+f x)+a}}\right )}{f}}{2 a}-\frac {9 a^2 \cot (e+f x)}{f \sqrt {a \sin (e+f x)+a}}\right )}{4 a}-\frac {a \cot (e+f x) \csc (e+f x)}{2 f \sqrt {a \sin (e+f x)+a}}}{6 a}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\cot (e+f x) \csc ^2(e+f x)}{3 f \sqrt {a \sin (e+f x)+a}}\)

Input:

Int[Cot[e + f*x]^4/Sqrt[a + a*Sin[e + f*x]],x]
 

Output:

-((Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x] 
])])/(Sqrt[a]*f)) - (Cot[e + f*x]*Csc[e + f*x]^2)/(3*f*Sqrt[a + a*Sin[e + 
f*x]]) - (-1/2*(a*Cot[e + f*x]*Csc[e + f*x])/(f*Sqrt[a + a*Sin[e + f*x]]) 
+ (3*(-1/2*((-14*a^(5/2)*ArcTanh[(Sqrt[a]*Cos[e + f*x])/Sqrt[a + a*Sin[e + 
 f*x]]])/f + (16*Sqrt[2]*a^(5/2)*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*S 
qrt[a + a*Sin[e + f*x]])])/f)/a - (9*a^2*Cot[e + f*x])/(f*Sqrt[a + a*Sin[e 
 + f*x]])))/(4*a))/(6*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3197
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^4, 
x_Symbol] :> Int[(a + b*Sin[e + f*x])^m, x] + Int[(a + b*Sin[e + f*x])^m*(( 
1 - 2*Sin[e + f*x]^2)/Sin[e + f*x]^4), x] /; FreeQ[{a, b, e, f, m}, x] && E 
qQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] &&  !LtQ[m, -1]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3463
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
+ 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2))   Int[(a 
 + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 
1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Eq 
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m 
 + 1/2, 0])
 

rule 3464
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A 
*b - a*B)/(b*c - a*d)   Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[(B*c 
- A*d)/(b*c - a*d)   Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], 
 x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
Maple [A] (verified)

Time = 0.29 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.07

method result size
default \(\frac {\left (1+\sin \left (f x +e \right )\right ) \sqrt {-a \left (-1+\sin \left (f x +e \right )\right )}\, \left (-21 \,\operatorname {arctanh}\left (\frac {\sqrt {-a \left (-1+\sin \left (f x +e \right )\right )}}{\sqrt {a}}\right ) a^{3} \sin \left (f x +e \right )^{3}+27 \left (-a \left (-1+\sin \left (f x +e \right )\right )\right )^{\frac {5}{2}} \sqrt {a}-56 \left (-a \left (-1+\sin \left (f x +e \right )\right )\right )^{\frac {3}{2}} a^{\frac {3}{2}}+21 \sqrt {-a \left (-1+\sin \left (f x +e \right )\right )}\, a^{\frac {5}{2}}\right )}{24 a^{\frac {7}{2}} \sin \left (f x +e \right )^{3} \cos \left (f x +e \right ) \sqrt {a +\sin \left (f x +e \right ) a}\, f}\) \(144\)

Input:

int(cot(f*x+e)^4/(a+sin(f*x+e)*a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/24*(1+sin(f*x+e))*(-a*(-1+sin(f*x+e)))^(1/2)*(-21*arctanh((-a*(-1+sin(f* 
x+e)))^(1/2)/a^(1/2))*a^3*sin(f*x+e)^3+27*(-a*(-1+sin(f*x+e)))^(5/2)*a^(1/ 
2)-56*(-a*(-1+sin(f*x+e)))^(3/2)*a^(3/2)+21*(-a*(-1+sin(f*x+e)))^(1/2)*a^( 
5/2))/a^(7/2)/sin(f*x+e)^3/cos(f*x+e)/(a+sin(f*x+e)*a)^(1/2)/f
                                                                                    
                                                                                    
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 369 vs. \(2 (115) = 230\).

Time = 0.10 (sec) , antiderivative size = 369, normalized size of antiderivative = 2.73 \[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx=\frac {21 \, {\left (\cos \left (f x + e\right )^{4} - 2 \, \cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right )^{3} + \cos \left (f x + e\right )^{2} - \cos \left (f x + e\right ) - 1\right )} \sin \left (f x + e\right ) + 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (f x + e\right )^{3} - 7 \, a \cos \left (f x + e\right )^{2} - 4 \, {\left (\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 3\right )} \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) - 3\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {a} - 9 \, a \cos \left (f x + e\right ) + {\left (a \cos \left (f x + e\right )^{2} + 8 \, a \cos \left (f x + e\right ) - a\right )} \sin \left (f x + e\right ) - a}{\cos \left (f x + e\right )^{3} + \cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right )^{2} - 1\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 1}\right ) - 4 \, {\left (27 \, \cos \left (f x + e\right )^{3} + 25 \, \cos \left (f x + e\right )^{2} - {\left (27 \, \cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) - 17\right )} \sin \left (f x + e\right ) - 19 \, \cos \left (f x + e\right ) - 17\right )} \sqrt {a \sin \left (f x + e\right ) + a}}{96 \, {\left (a f \cos \left (f x + e\right )^{4} - 2 \, a f \cos \left (f x + e\right )^{2} + a f - {\left (a f \cos \left (f x + e\right )^{3} + a f \cos \left (f x + e\right )^{2} - a f \cos \left (f x + e\right ) - a f\right )} \sin \left (f x + e\right )\right )}} \] Input:

integrate(cot(f*x+e)^4/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")
 

Output:

1/96*(21*(cos(f*x + e)^4 - 2*cos(f*x + e)^2 - (cos(f*x + e)^3 + cos(f*x + 
e)^2 - cos(f*x + e) - 1)*sin(f*x + e) + 1)*sqrt(a)*log((a*cos(f*x + e)^3 - 
 7*a*cos(f*x + e)^2 - 4*(cos(f*x + e)^2 + (cos(f*x + e) + 3)*sin(f*x + e) 
- 2*cos(f*x + e) - 3)*sqrt(a*sin(f*x + e) + a)*sqrt(a) - 9*a*cos(f*x + e) 
+ (a*cos(f*x + e)^2 + 8*a*cos(f*x + e) - a)*sin(f*x + e) - a)/(cos(f*x + e 
)^3 + cos(f*x + e)^2 + (cos(f*x + e)^2 - 1)*sin(f*x + e) - cos(f*x + e) - 
1)) - 4*(27*cos(f*x + e)^3 + 25*cos(f*x + e)^2 - (27*cos(f*x + e)^2 + 2*co 
s(f*x + e) - 17)*sin(f*x + e) - 19*cos(f*x + e) - 17)*sqrt(a*sin(f*x + e) 
+ a))/(a*f*cos(f*x + e)^4 - 2*a*f*cos(f*x + e)^2 + a*f - (a*f*cos(f*x + e) 
^3 + a*f*cos(f*x + e)^2 - a*f*cos(f*x + e) - a*f)*sin(f*x + e))
 

Sympy [F]

\[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx=\int \frac {\cot ^{4}{\left (e + f x \right )}}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )}}\, dx \] Input:

integrate(cot(f*x+e)**4/(a+a*sin(f*x+e))**(1/2),x)
 

Output:

Integral(cot(e + f*x)**4/sqrt(a*(sin(e + f*x) + 1)), x)
 

Maxima [F]

\[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx=\int { \frac {\cot \left (f x + e\right )^{4}}{\sqrt {a \sin \left (f x + e\right ) + a}} \,d x } \] Input:

integrate(cot(f*x+e)^4/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")
 

Output:

integrate(cot(f*x + e)^4/sqrt(a*sin(f*x + e) + a), x)
 

Giac [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.37 \[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx=\frac {\frac {21 \, \log \left ({\left | \frac {1}{2} \, \sqrt {2} + \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {21 \, \log \left ({\left | -\frac {1}{2} \, \sqrt {2} + \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {2 \, \sqrt {2} {\left (108 \, \sqrt {a} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{5} - 112 \, \sqrt {a} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 21 \, \sqrt {a} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{{\left (2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1\right )}^{3} a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{48 \, f} \] Input:

integrate(cot(f*x+e)^4/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")
 

Output:

1/48*(21*log(abs(1/2*sqrt(2) + sin(-1/4*pi + 1/2*f*x + 1/2*e)))/(sqrt(a)*s 
gn(cos(-1/4*pi + 1/2*f*x + 1/2*e))) - 21*log(abs(-1/2*sqrt(2) + sin(-1/4*p 
i + 1/2*f*x + 1/2*e)))/(sqrt(a)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))) + 2*s 
qrt(2)*(108*sqrt(a)*sin(-1/4*pi + 1/2*f*x + 1/2*e)^5 - 112*sqrt(a)*sin(-1/ 
4*pi + 1/2*f*x + 1/2*e)^3 + 21*sqrt(a)*sin(-1/4*pi + 1/2*f*x + 1/2*e))/((2 
*sin(-1/4*pi + 1/2*f*x + 1/2*e)^2 - 1)^3*a*sgn(cos(-1/4*pi + 1/2*f*x + 1/2 
*e))))/f
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx=\int \frac {{\mathrm {cot}\left (e+f\,x\right )}^4}{\sqrt {a+a\,\sin \left (e+f\,x\right )}} \,d x \] Input:

int(cot(e + f*x)^4/(a + a*sin(e + f*x))^(1/2),x)
 

Output:

int(cot(e + f*x)^4/(a + a*sin(e + f*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \cot \left (f x +e \right )^{4}}{\sin \left (f x +e \right )+1}d x \right )}{a} \] Input:

int(cot(f*x+e)^4/(a+a*sin(f*x+e))^(1/2),x)
 

Output:

(sqrt(a)*int((sqrt(sin(e + f*x) + 1)*cot(e + f*x)**4)/(sin(e + f*x) + 1),x 
))/a