\(\int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx\) [245]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 118 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\frac {7}{16} a^2 c^4 x+\frac {7 a^2 c^4 \cos ^5(e+f x)}{30 f}+\frac {7 a^2 c^4 \cos (e+f x) \sin (e+f x)}{16 f}+\frac {7 a^2 c^4 \cos ^3(e+f x) \sin (e+f x)}{24 f}+\frac {a^2 \cos ^5(e+f x) \left (c^4-c^4 \sin (e+f x)\right )}{6 f} \] Output:

7/16*a^2*c^4*x+7/30*a^2*c^4*cos(f*x+e)^5/f+7/16*a^2*c^4*cos(f*x+e)*sin(f*x 
+e)/f+7/24*a^2*c^4*cos(f*x+e)^3*sin(f*x+e)/f+1/6*a^2*cos(f*x+e)^5*(c^4-c^4 
*sin(f*x+e))/f
 

Mathematica [A] (verified)

Time = 7.84 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.67 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\frac {a^2 c^4 (420 e+420 f x+240 \cos (e+f x)+120 \cos (3 (e+f x))+24 \cos (5 (e+f x))+255 \sin (2 (e+f x))+15 \sin (4 (e+f x))-5 \sin (6 (e+f x)))}{960 f} \] Input:

Integrate[(a + a*Sin[e + f*x])^2*(c - c*Sin[e + f*x])^4,x]
 

Output:

(a^2*c^4*(420*e + 420*f*x + 240*Cos[e + f*x] + 120*Cos[3*(e + f*x)] + 24*C 
os[5*(e + f*x)] + 255*Sin[2*(e + f*x)] + 15*Sin[4*(e + f*x)] - 5*Sin[6*(e 
+ f*x)]))/(960*f)
 

Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.96, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.423, Rules used = {3042, 3215, 3042, 3157, 3042, 3148, 3042, 3115, 3042, 3115, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a \sin (e+f x)+a)^2 (c-c \sin (e+f x))^4 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a \sin (e+f x)+a)^2 (c-c \sin (e+f x))^4dx\)

\(\Big \downarrow \) 3215

\(\displaystyle a^2 c^2 \int \cos ^4(e+f x) (c-c \sin (e+f x))^2dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \int \cos (e+f x)^4 (c-c \sin (e+f x))^2dx\)

\(\Big \downarrow \) 3157

\(\displaystyle a^2 c^2 \left (\frac {7}{6} c \int \cos ^4(e+f x) (c-c \sin (e+f x))dx+\frac {\cos ^5(e+f x) \left (c^2-c^2 \sin (e+f x)\right )}{6 f}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \left (\frac {7}{6} c \int \cos (e+f x)^4 (c-c \sin (e+f x))dx+\frac {\cos ^5(e+f x) \left (c^2-c^2 \sin (e+f x)\right )}{6 f}\right )\)

\(\Big \downarrow \) 3148

\(\displaystyle a^2 c^2 \left (\frac {7}{6} c \left (c \int \cos ^4(e+f x)dx+\frac {c \cos ^5(e+f x)}{5 f}\right )+\frac {\cos ^5(e+f x) \left (c^2-c^2 \sin (e+f x)\right )}{6 f}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \left (\frac {7}{6} c \left (c \int \sin \left (e+f x+\frac {\pi }{2}\right )^4dx+\frac {c \cos ^5(e+f x)}{5 f}\right )+\frac {\cos ^5(e+f x) \left (c^2-c^2 \sin (e+f x)\right )}{6 f}\right )\)

\(\Big \downarrow \) 3115

\(\displaystyle a^2 c^2 \left (\frac {7}{6} c \left (c \left (\frac {3}{4} \int \cos ^2(e+f x)dx+\frac {\sin (e+f x) \cos ^3(e+f x)}{4 f}\right )+\frac {c \cos ^5(e+f x)}{5 f}\right )+\frac {\cos ^5(e+f x) \left (c^2-c^2 \sin (e+f x)\right )}{6 f}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \left (\frac {7}{6} c \left (c \left (\frac {3}{4} \int \sin \left (e+f x+\frac {\pi }{2}\right )^2dx+\frac {\sin (e+f x) \cos ^3(e+f x)}{4 f}\right )+\frac {c \cos ^5(e+f x)}{5 f}\right )+\frac {\cos ^5(e+f x) \left (c^2-c^2 \sin (e+f x)\right )}{6 f}\right )\)

\(\Big \downarrow \) 3115

\(\displaystyle a^2 c^2 \left (\frac {7}{6} c \left (c \left (\frac {3}{4} \left (\frac {\int 1dx}{2}+\frac {\sin (e+f x) \cos (e+f x)}{2 f}\right )+\frac {\sin (e+f x) \cos ^3(e+f x)}{4 f}\right )+\frac {c \cos ^5(e+f x)}{5 f}\right )+\frac {\cos ^5(e+f x) \left (c^2-c^2 \sin (e+f x)\right )}{6 f}\right )\)

\(\Big \downarrow \) 24

\(\displaystyle a^2 c^2 \left (\frac {\cos ^5(e+f x) \left (c^2-c^2 \sin (e+f x)\right )}{6 f}+\frac {7}{6} c \left (\frac {c \cos ^5(e+f x)}{5 f}+c \left (\frac {\sin (e+f x) \cos ^3(e+f x)}{4 f}+\frac {3}{4} \left (\frac {\sin (e+f x) \cos (e+f x)}{2 f}+\frac {x}{2}\right )\right )\right )\right )\)

Input:

Int[(a + a*Sin[e + f*x])^2*(c - c*Sin[e + f*x])^4,x]
 

Output:

a^2*c^2*((Cos[e + f*x]^5*(c^2 - c^2*Sin[e + f*x]))/(6*f) + (7*c*((c*Cos[e 
+ f*x]^5)/(5*f) + c*((Cos[e + f*x]^3*Sin[e + f*x])/(4*f) + (3*(x/2 + (Cos[ 
e + f*x]*Sin[e + f*x])/(2*f)))/4)))/6)
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3148
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[(-b)*((g*Cos[e + f*x])^(p + 1)/(f*g*(p + 1))), x] + 
 Simp[a   Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x] && 
 (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])
 

rule 3157
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(-b)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + 
f*x])^(m - 1)/(f*g*(m + p))), x] + Simp[a*((2*m + p - 1)/(m + p))   Int[(g* 
Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, 
g, m, p}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 0] && NeQ[m + p, 0] && Integers 
Q[2*m, 2*p]
 

rule 3215
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a^m*c^m   Int[Cos[e + f*x]^(2*m)*(c + 
 d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[ 
b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((Lt 
Q[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))
 
Maple [A] (verified)

Time = 0.92 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.79

\[\frac {c^{4} a^{2} \left (-\frac {\left (\sin \left (f x +e \right )^{5}+\frac {5 \sin \left (f x +e \right )^{3}}{4}+\frac {15 \sin \left (f x +e \right )}{8}\right ) \cos \left (f x +e \right )}{6}+\frac {5 f x}{16}+\frac {5 e}{16}\right )+\frac {2 c^{4} a^{2} \left (\frac {8}{3}+\sin \left (f x +e \right )^{4}+\frac {4 \sin \left (f x +e \right )^{2}}{3}\right ) \cos \left (f x +e \right )}{5}-c^{4} a^{2} \left (-\frac {\left (\sin \left (f x +e \right )^{3}+\frac {3 \sin \left (f x +e \right )}{2}\right ) \cos \left (f x +e \right )}{4}+\frac {3 f x}{8}+\frac {3 e}{8}\right )-\frac {4 c^{4} a^{2} \left (2+\sin \left (f x +e \right )^{2}\right ) \cos \left (f x +e \right )}{3}-c^{4} a^{2} \left (-\frac {\cos \left (f x +e \right ) \sin \left (f x +e \right )}{2}+\frac {f x}{2}+\frac {e}{2}\right )+2 a^{2} c^{4} \cos \left (f x +e \right )+c^{4} a^{2} \left (f x +e \right )}{f}\]

Input:

int((a+sin(f*x+e)*a)^2*(c-c*sin(f*x+e))^4,x)
 

Output:

1/f*(c^4*a^2*(-1/6*(sin(f*x+e)^5+5/4*sin(f*x+e)^3+15/8*sin(f*x+e))*cos(f*x 
+e)+5/16*f*x+5/16*e)+2/5*c^4*a^2*(8/3+sin(f*x+e)^4+4/3*sin(f*x+e)^2)*cos(f 
*x+e)-c^4*a^2*(-1/4*(sin(f*x+e)^3+3/2*sin(f*x+e))*cos(f*x+e)+3/8*f*x+3/8*e 
)-4/3*c^4*a^2*(2+sin(f*x+e)^2)*cos(f*x+e)-c^4*a^2*(-1/2*cos(f*x+e)*sin(f*x 
+e)+1/2*f*x+1/2*e)+2*a^2*c^4*cos(f*x+e)+c^4*a^2*(f*x+e))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.74 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\frac {96 \, a^{2} c^{4} \cos \left (f x + e\right )^{5} + 105 \, a^{2} c^{4} f x - 5 \, {\left (8 \, a^{2} c^{4} \cos \left (f x + e\right )^{5} - 14 \, a^{2} c^{4} \cos \left (f x + e\right )^{3} - 21 \, a^{2} c^{4} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{240 \, f} \] Input:

integrate((a+a*sin(f*x+e))^2*(c-c*sin(f*x+e))^4,x, algorithm="fricas")
 

Output:

1/240*(96*a^2*c^4*cos(f*x + e)^5 + 105*a^2*c^4*f*x - 5*(8*a^2*c^4*cos(f*x 
+ e)^5 - 14*a^2*c^4*cos(f*x + e)^3 - 21*a^2*c^4*cos(f*x + e))*sin(f*x + e) 
)/f
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 530 vs. \(2 (112) = 224\).

Time = 0.40 (sec) , antiderivative size = 530, normalized size of antiderivative = 4.49 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\begin {cases} \frac {5 a^{2} c^{4} x \sin ^{6}{\left (e + f x \right )}}{16} + \frac {15 a^{2} c^{4} x \sin ^{4}{\left (e + f x \right )} \cos ^{2}{\left (e + f x \right )}}{16} - \frac {3 a^{2} c^{4} x \sin ^{4}{\left (e + f x \right )}}{8} + \frac {15 a^{2} c^{4} x \sin ^{2}{\left (e + f x \right )} \cos ^{4}{\left (e + f x \right )}}{16} - \frac {3 a^{2} c^{4} x \sin ^{2}{\left (e + f x \right )} \cos ^{2}{\left (e + f x \right )}}{4} - \frac {a^{2} c^{4} x \sin ^{2}{\left (e + f x \right )}}{2} + \frac {5 a^{2} c^{4} x \cos ^{6}{\left (e + f x \right )}}{16} - \frac {3 a^{2} c^{4} x \cos ^{4}{\left (e + f x \right )}}{8} - \frac {a^{2} c^{4} x \cos ^{2}{\left (e + f x \right )}}{2} + a^{2} c^{4} x - \frac {11 a^{2} c^{4} \sin ^{5}{\left (e + f x \right )} \cos {\left (e + f x \right )}}{16 f} + \frac {2 a^{2} c^{4} \sin ^{4}{\left (e + f x \right )} \cos {\left (e + f x \right )}}{f} - \frac {5 a^{2} c^{4} \sin ^{3}{\left (e + f x \right )} \cos ^{3}{\left (e + f x \right )}}{6 f} + \frac {5 a^{2} c^{4} \sin ^{3}{\left (e + f x \right )} \cos {\left (e + f x \right )}}{8 f} + \frac {8 a^{2} c^{4} \sin ^{2}{\left (e + f x \right )} \cos ^{3}{\left (e + f x \right )}}{3 f} - \frac {4 a^{2} c^{4} \sin ^{2}{\left (e + f x \right )} \cos {\left (e + f x \right )}}{f} - \frac {5 a^{2} c^{4} \sin {\left (e + f x \right )} \cos ^{5}{\left (e + f x \right )}}{16 f} + \frac {3 a^{2} c^{4} \sin {\left (e + f x \right )} \cos ^{3}{\left (e + f x \right )}}{8 f} + \frac {a^{2} c^{4} \sin {\left (e + f x \right )} \cos {\left (e + f x \right )}}{2 f} + \frac {16 a^{2} c^{4} \cos ^{5}{\left (e + f x \right )}}{15 f} - \frac {8 a^{2} c^{4} \cos ^{3}{\left (e + f x \right )}}{3 f} + \frac {2 a^{2} c^{4} \cos {\left (e + f x \right )}}{f} & \text {for}\: f \neq 0 \\x \left (a \sin {\left (e \right )} + a\right )^{2} \left (- c \sin {\left (e \right )} + c\right )^{4} & \text {otherwise} \end {cases} \] Input:

integrate((a+a*sin(f*x+e))**2*(c-c*sin(f*x+e))**4,x)
 

Output:

Piecewise((5*a**2*c**4*x*sin(e + f*x)**6/16 + 15*a**2*c**4*x*sin(e + f*x)* 
*4*cos(e + f*x)**2/16 - 3*a**2*c**4*x*sin(e + f*x)**4/8 + 15*a**2*c**4*x*s 
in(e + f*x)**2*cos(e + f*x)**4/16 - 3*a**2*c**4*x*sin(e + f*x)**2*cos(e + 
f*x)**2/4 - a**2*c**4*x*sin(e + f*x)**2/2 + 5*a**2*c**4*x*cos(e + f*x)**6/ 
16 - 3*a**2*c**4*x*cos(e + f*x)**4/8 - a**2*c**4*x*cos(e + f*x)**2/2 + a** 
2*c**4*x - 11*a**2*c**4*sin(e + f*x)**5*cos(e + f*x)/(16*f) + 2*a**2*c**4* 
sin(e + f*x)**4*cos(e + f*x)/f - 5*a**2*c**4*sin(e + f*x)**3*cos(e + f*x)* 
*3/(6*f) + 5*a**2*c**4*sin(e + f*x)**3*cos(e + f*x)/(8*f) + 8*a**2*c**4*si 
n(e + f*x)**2*cos(e + f*x)**3/(3*f) - 4*a**2*c**4*sin(e + f*x)**2*cos(e + 
f*x)/f - 5*a**2*c**4*sin(e + f*x)*cos(e + f*x)**5/(16*f) + 3*a**2*c**4*sin 
(e + f*x)*cos(e + f*x)**3/(8*f) + a**2*c**4*sin(e + f*x)*cos(e + f*x)/(2*f 
) + 16*a**2*c**4*cos(e + f*x)**5/(15*f) - 8*a**2*c**4*cos(e + f*x)**3/(3*f 
) + 2*a**2*c**4*cos(e + f*x)/f, Ne(f, 0)), (x*(a*sin(e) + a)**2*(-c*sin(e) 
 + c)**4, True))
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.77 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\frac {128 \, {\left (3 \, \cos \left (f x + e\right )^{5} - 10 \, \cos \left (f x + e\right )^{3} + 15 \, \cos \left (f x + e\right )\right )} a^{2} c^{4} + 1280 \, {\left (\cos \left (f x + e\right )^{3} - 3 \, \cos \left (f x + e\right )\right )} a^{2} c^{4} + 5 \, {\left (4 \, \sin \left (2 \, f x + 2 \, e\right )^{3} + 60 \, f x + 60 \, e + 9 \, \sin \left (4 \, f x + 4 \, e\right ) - 48 \, \sin \left (2 \, f x + 2 \, e\right )\right )} a^{2} c^{4} - 30 \, {\left (12 \, f x + 12 \, e + \sin \left (4 \, f x + 4 \, e\right ) - 8 \, \sin \left (2 \, f x + 2 \, e\right )\right )} a^{2} c^{4} - 240 \, {\left (2 \, f x + 2 \, e - \sin \left (2 \, f x + 2 \, e\right )\right )} a^{2} c^{4} + 960 \, {\left (f x + e\right )} a^{2} c^{4} + 1920 \, a^{2} c^{4} \cos \left (f x + e\right )}{960 \, f} \] Input:

integrate((a+a*sin(f*x+e))^2*(c-c*sin(f*x+e))^4,x, algorithm="maxima")
 

Output:

1/960*(128*(3*cos(f*x + e)^5 - 10*cos(f*x + e)^3 + 15*cos(f*x + e))*a^2*c^ 
4 + 1280*(cos(f*x + e)^3 - 3*cos(f*x + e))*a^2*c^4 + 5*(4*sin(2*f*x + 2*e) 
^3 + 60*f*x + 60*e + 9*sin(4*f*x + 4*e) - 48*sin(2*f*x + 2*e))*a^2*c^4 - 3 
0*(12*f*x + 12*e + sin(4*f*x + 4*e) - 8*sin(2*f*x + 2*e))*a^2*c^4 - 240*(2 
*f*x + 2*e - sin(2*f*x + 2*e))*a^2*c^4 + 960*(f*x + e)*a^2*c^4 + 1920*a^2* 
c^4*cos(f*x + e))/f
                                                                                    
                                                                                    
 

Giac [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.08 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\frac {7}{16} \, a^{2} c^{4} x + \frac {a^{2} c^{4} \cos \left (5 \, f x + 5 \, e\right )}{40 \, f} + \frac {a^{2} c^{4} \cos \left (3 \, f x + 3 \, e\right )}{8 \, f} + \frac {a^{2} c^{4} \cos \left (f x + e\right )}{4 \, f} - \frac {a^{2} c^{4} \sin \left (6 \, f x + 6 \, e\right )}{192 \, f} + \frac {a^{2} c^{4} \sin \left (4 \, f x + 4 \, e\right )}{64 \, f} + \frac {17 \, a^{2} c^{4} \sin \left (2 \, f x + 2 \, e\right )}{64 \, f} \] Input:

integrate((a+a*sin(f*x+e))^2*(c-c*sin(f*x+e))^4,x, algorithm="giac")
 

Output:

7/16*a^2*c^4*x + 1/40*a^2*c^4*cos(5*f*x + 5*e)/f + 1/8*a^2*c^4*cos(3*f*x + 
 3*e)/f + 1/4*a^2*c^4*cos(f*x + e)/f - 1/192*a^2*c^4*sin(6*f*x + 6*e)/f + 
1/64*a^2*c^4*sin(4*f*x + 4*e)/f + 17/64*a^2*c^4*sin(2*f*x + 2*e)/f
 

Mupad [B] (verification not implemented)

Time = 19.83 (sec) , antiderivative size = 284, normalized size of antiderivative = 2.41 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\frac {a^2\,c^4\,\left (105\,e+270\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )+192\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2+890\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3+1920\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4-660\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^5+1920\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^6+660\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^7+960\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^8-890\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^9+960\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^{10}-270\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^{11}+105\,f\,x+630\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2\,\left (e+f\,x\right )+1575\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4\,\left (e+f\,x\right )+2100\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^6\,\left (e+f\,x\right )+1575\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^8\,\left (e+f\,x\right )+630\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^{10}\,\left (e+f\,x\right )+105\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^{12}\,\left (e+f\,x\right )+192\right )}{240\,f\,{\left ({\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2+1\right )}^6} \] Input:

int((a + a*sin(e + f*x))^2*(c - c*sin(e + f*x))^4,x)
 

Output:

(a^2*c^4*(105*e + 270*tan(e/2 + (f*x)/2) + 192*tan(e/2 + (f*x)/2)^2 + 890* 
tan(e/2 + (f*x)/2)^3 + 1920*tan(e/2 + (f*x)/2)^4 - 660*tan(e/2 + (f*x)/2)^ 
5 + 1920*tan(e/2 + (f*x)/2)^6 + 660*tan(e/2 + (f*x)/2)^7 + 960*tan(e/2 + ( 
f*x)/2)^8 - 890*tan(e/2 + (f*x)/2)^9 + 960*tan(e/2 + (f*x)/2)^10 - 270*tan 
(e/2 + (f*x)/2)^11 + 105*f*x + 630*tan(e/2 + (f*x)/2)^2*(e + f*x) + 1575*t 
an(e/2 + (f*x)/2)^4*(e + f*x) + 2100*tan(e/2 + (f*x)/2)^6*(e + f*x) + 1575 
*tan(e/2 + (f*x)/2)^8*(e + f*x) + 630*tan(e/2 + (f*x)/2)^10*(e + f*x) + 10 
5*tan(e/2 + (f*x)/2)^12*(e + f*x) + 192))/(240*f*(tan(e/2 + (f*x)/2)^2 + 1 
)^6)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.87 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\frac {a^{2} c^{4} \left (-40 \cos \left (f x +e \right ) \sin \left (f x +e \right )^{5}+96 \cos \left (f x +e \right ) \sin \left (f x +e \right )^{4}+10 \cos \left (f x +e \right ) \sin \left (f x +e \right )^{3}-192 \cos \left (f x +e \right ) \sin \left (f x +e \right )^{2}+135 \cos \left (f x +e \right ) \sin \left (f x +e \right )+96 \cos \left (f x +e \right )+105 f x -96\right )}{240 f} \] Input:

int((a+a*sin(f*x+e))^2*(c-c*sin(f*x+e))^4,x)
 

Output:

(a**2*c**4*( - 40*cos(e + f*x)*sin(e + f*x)**5 + 96*cos(e + f*x)*sin(e + f 
*x)**4 + 10*cos(e + f*x)*sin(e + f*x)**3 - 192*cos(e + f*x)*sin(e + f*x)** 
2 + 135*cos(e + f*x)*sin(e + f*x) + 96*cos(e + f*x) + 105*f*x - 96))/(240* 
f)