\(\int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4} \, dx\) [285]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 111 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4} \, dx=\frac {\sec ^3(e+f x)}{7 a^2 f \left (c^2-c^2 \sin (e+f x)\right )^2}+\frac {\sec ^3(e+f x)}{7 a^2 f \left (c^4-c^4 \sin (e+f x)\right )}+\frac {4 \tan (e+f x)}{7 a^2 c^4 f}+\frac {4 \tan ^3(e+f x)}{21 a^2 c^4 f} \] Output:

1/7*sec(f*x+e)^3/a^2/f/(c^2-c^2*sin(f*x+e))^2+1/7*sec(f*x+e)^3/a^2/f/(c^4- 
c^4*sin(f*x+e))+4/7*tan(f*x+e)/a^2/c^4/f+4/21*tan(f*x+e)^3/a^2/c^4/f
 

Mathematica [A] (verified)

Time = 1.94 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.57 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (54390 \cos (e+f x)+8192 \cos (2 (e+f x))+11655 \cos (3 (e+f x))+4096 \cos (4 (e+f x))-3885 \cos (5 (e+f x))+14336 \sin (e+f x)-31080 \sin (2 (e+f x))+3072 \sin (3 (e+f x))-15540 \sin (4 (e+f x))-1024 \sin (5 (e+f x)))}{43008 a^2 c^4 f (-1+\sin (e+f x))^4 (1+\sin (e+f x))^2} \] Input:

Integrate[1/((a + a*Sin[e + f*x])^2*(c - c*Sin[e + f*x])^4),x]
 

Output:

((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2 
])*(54390*Cos[e + f*x] + 8192*Cos[2*(e + f*x)] + 11655*Cos[3*(e + f*x)] + 
4096*Cos[4*(e + f*x)] - 3885*Cos[5*(e + f*x)] + 14336*Sin[e + f*x] - 31080 
*Sin[2*(e + f*x)] + 3072*Sin[3*(e + f*x)] - 15540*Sin[4*(e + f*x)] - 1024* 
Sin[5*(e + f*x)]))/(43008*a^2*c^4*f*(-1 + Sin[e + f*x])^4*(1 + Sin[e + f*x 
])^2)
 

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.93, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.346, Rules used = {3042, 3215, 3042, 3151, 3042, 3151, 3042, 4254, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a \sin (e+f x)+a)^2 (c-c \sin (e+f x))^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(a \sin (e+f x)+a)^2 (c-c \sin (e+f x))^4}dx\)

\(\Big \downarrow \) 3215

\(\displaystyle \frac {\int \frac {\sec ^4(e+f x)}{(c-c \sin (e+f x))^2}dx}{a^2 c^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{\cos (e+f x)^4 (c-c \sin (e+f x))^2}dx}{a^2 c^2}\)

\(\Big \downarrow \) 3151

\(\displaystyle \frac {\frac {5 \int \frac {\sec ^4(e+f x)}{c-c \sin (e+f x)}dx}{7 c}+\frac {\sec ^3(e+f x)}{7 f (c-c \sin (e+f x))^2}}{a^2 c^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {5 \int \frac {1}{\cos (e+f x)^4 (c-c \sin (e+f x))}dx}{7 c}+\frac {\sec ^3(e+f x)}{7 f (c-c \sin (e+f x))^2}}{a^2 c^2}\)

\(\Big \downarrow \) 3151

\(\displaystyle \frac {\frac {5 \left (\frac {4 \int \sec ^4(e+f x)dx}{5 c}+\frac {\sec ^3(e+f x)}{5 f (c-c \sin (e+f x))}\right )}{7 c}+\frac {\sec ^3(e+f x)}{7 f (c-c \sin (e+f x))^2}}{a^2 c^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {5 \left (\frac {4 \int \csc \left (e+f x+\frac {\pi }{2}\right )^4dx}{5 c}+\frac {\sec ^3(e+f x)}{5 f (c-c \sin (e+f x))}\right )}{7 c}+\frac {\sec ^3(e+f x)}{7 f (c-c \sin (e+f x))^2}}{a^2 c^2}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {\frac {5 \left (\frac {\sec ^3(e+f x)}{5 f (c-c \sin (e+f x))}-\frac {4 \int \left (\tan ^2(e+f x)+1\right )d(-\tan (e+f x))}{5 c f}\right )}{7 c}+\frac {\sec ^3(e+f x)}{7 f (c-c \sin (e+f x))^2}}{a^2 c^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {\sec ^3(e+f x)}{7 f (c-c \sin (e+f x))^2}+\frac {5 \left (\frac {\sec ^3(e+f x)}{5 f (c-c \sin (e+f x))}-\frac {4 \left (-\frac {1}{3} \tan ^3(e+f x)-\tan (e+f x)\right )}{5 c f}\right )}{7 c}}{a^2 c^2}\)

Input:

Int[1/((a + a*Sin[e + f*x])^2*(c - c*Sin[e + f*x])^4),x]
 

Output:

(Sec[e + f*x]^3/(7*f*(c - c*Sin[e + f*x])^2) + (5*(Sec[e + f*x]^3/(5*f*(c 
- c*Sin[e + f*x])) - (4*(-Tan[e + f*x] - Tan[e + f*x]^3/3))/(5*c*f)))/(7*c 
))/(a^2*c^2)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3151
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x 
])^m/(a*f*g*Simplify[2*m + p + 1])), x] + Simp[Simplify[m + p + 1]/(a*Simpl 
ify[2*m + p + 1])   Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x] 
, x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[Simpli 
fy[m + p + 1], 0] && NeQ[2*m + p + 1, 0] &&  !IGtQ[m, 0]
 

rule 3215
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a^m*c^m   Int[Cos[e + f*x]^(2*m)*(c + 
 d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[ 
b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((Lt 
Q[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.65 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.80

method result size
risch \(-\frac {16 i \left (-8 i {\mathrm e}^{3 i \left (f x +e \right )}+14 \,{\mathrm e}^{4 i \left (f x +e \right )}-4 i {\mathrm e}^{i \left (f x +e \right )}+3 \,{\mathrm e}^{2 i \left (f x +e \right )}-1\right )}{21 \left ({\mathrm e}^{i \left (f x +e \right )}-i\right )^{7} \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )^{3} f \,a^{2} c^{4}}\) \(89\)
parallelrisch \(\frac {-\frac {4}{7}-\frac {152 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}}{21}+\frac {8 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{4}}{3}-\frac {16 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{6}}{3}-\frac {8 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{7}}{3}-2 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{9}+4 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{5}+4 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{8}+\frac {2 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{7}+\frac {16 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}}{7}}{f \,a^{2} c^{4} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{7}}\) \(155\)
derivativedivides \(\frac {-\frac {4}{7 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{7}}-\frac {2}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{6}}-\frac {4}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{5}}-\frac {5}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{4}}-\frac {55}{12 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{3}}-\frac {23}{8 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{2}}-\frac {13}{8 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )}-\frac {1}{12 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}+\frac {1}{8 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{2}}-\frac {3}{8 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}}{a^{2} c^{4} f}\) \(163\)
default \(\frac {-\frac {4}{7 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{7}}-\frac {2}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{6}}-\frac {4}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{5}}-\frac {5}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{4}}-\frac {55}{12 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{3}}-\frac {23}{8 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{2}}-\frac {13}{8 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )}-\frac {1}{12 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}+\frac {1}{8 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{2}}-\frac {3}{8 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}}{a^{2} c^{4} f}\) \(163\)
norman \(\frac {\frac {4 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{5}}{a f c}-\frac {1}{14 a c f}-\frac {\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{10}}{2 a f c}+\frac {5 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{8}}{2 a f c}-\frac {20 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{7}}{3 a f c}-\frac {12 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{7 a c f}-\frac {68 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}}{21 a c f}+\frac {5 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{6}}{3 a f c}-\frac {13 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{4}}{3 a f c}+\frac {53 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}}{14 a c f}}{a \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3} c^{3} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{7}}\) \(242\)

Input:

int(1/(a+sin(f*x+e)*a)^2/(c-c*sin(f*x+e))^4,x,method=_RETURNVERBOSE)
 

Output:

-16/21*I*(-8*I*exp(3*I*(f*x+e))+14*exp(4*I*(f*x+e))-4*I*exp(I*(f*x+e))+3*e 
xp(2*I*(f*x+e))-1)/(exp(I*(f*x+e))-I)^7/(exp(I*(f*x+e))+I)^3/f/a^2/c^4
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.02 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4} \, dx=-\frac {16 \, \cos \left (f x + e\right )^{4} - 8 \, \cos \left (f x + e\right )^{2} - {\left (8 \, \cos \left (f x + e\right )^{4} - 12 \, \cos \left (f x + e\right )^{2} - 5\right )} \sin \left (f x + e\right ) - 2}{21 \, {\left (a^{2} c^{4} f \cos \left (f x + e\right )^{5} + 2 \, a^{2} c^{4} f \cos \left (f x + e\right )^{3} \sin \left (f x + e\right ) - 2 \, a^{2} c^{4} f \cos \left (f x + e\right )^{3}\right )}} \] Input:

integrate(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^4,x, algorithm="fricas")
 

Output:

-1/21*(16*cos(f*x + e)^4 - 8*cos(f*x + e)^2 - (8*cos(f*x + e)^4 - 12*cos(f 
*x + e)^2 - 5)*sin(f*x + e) - 2)/(a^2*c^4*f*cos(f*x + e)^5 + 2*a^2*c^4*f*c 
os(f*x + e)^3*sin(f*x + e) - 2*a^2*c^4*f*cos(f*x + e)^3)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2213 vs. \(2 (97) = 194\).

Time = 10.29 (sec) , antiderivative size = 2213, normalized size of antiderivative = 19.94 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4} \, dx=\text {Too large to display} \] Input:

integrate(1/(a+a*sin(f*x+e))**2/(c-c*sin(f*x+e))**4,x)
 

Output:

Piecewise((-42*tan(e/2 + f*x/2)**9/(21*a**2*c**4*f*tan(e/2 + f*x/2)**10 - 
84*a**2*c**4*f*tan(e/2 + f*x/2)**9 + 63*a**2*c**4*f*tan(e/2 + f*x/2)**8 + 
168*a**2*c**4*f*tan(e/2 + f*x/2)**7 - 294*a**2*c**4*f*tan(e/2 + f*x/2)**6 
+ 294*a**2*c**4*f*tan(e/2 + f*x/2)**4 - 168*a**2*c**4*f*tan(e/2 + f*x/2)** 
3 - 63*a**2*c**4*f*tan(e/2 + f*x/2)**2 + 84*a**2*c**4*f*tan(e/2 + f*x/2) - 
 21*a**2*c**4*f) + 84*tan(e/2 + f*x/2)**8/(21*a**2*c**4*f*tan(e/2 + f*x/2) 
**10 - 84*a**2*c**4*f*tan(e/2 + f*x/2)**9 + 63*a**2*c**4*f*tan(e/2 + f*x/2 
)**8 + 168*a**2*c**4*f*tan(e/2 + f*x/2)**7 - 294*a**2*c**4*f*tan(e/2 + f*x 
/2)**6 + 294*a**2*c**4*f*tan(e/2 + f*x/2)**4 - 168*a**2*c**4*f*tan(e/2 + f 
*x/2)**3 - 63*a**2*c**4*f*tan(e/2 + f*x/2)**2 + 84*a**2*c**4*f*tan(e/2 + f 
*x/2) - 21*a**2*c**4*f) - 56*tan(e/2 + f*x/2)**7/(21*a**2*c**4*f*tan(e/2 + 
 f*x/2)**10 - 84*a**2*c**4*f*tan(e/2 + f*x/2)**9 + 63*a**2*c**4*f*tan(e/2 
+ f*x/2)**8 + 168*a**2*c**4*f*tan(e/2 + f*x/2)**7 - 294*a**2*c**4*f*tan(e/ 
2 + f*x/2)**6 + 294*a**2*c**4*f*tan(e/2 + f*x/2)**4 - 168*a**2*c**4*f*tan( 
e/2 + f*x/2)**3 - 63*a**2*c**4*f*tan(e/2 + f*x/2)**2 + 84*a**2*c**4*f*tan( 
e/2 + f*x/2) - 21*a**2*c**4*f) - 112*tan(e/2 + f*x/2)**6/(21*a**2*c**4*f*t 
an(e/2 + f*x/2)**10 - 84*a**2*c**4*f*tan(e/2 + f*x/2)**9 + 63*a**2*c**4*f* 
tan(e/2 + f*x/2)**8 + 168*a**2*c**4*f*tan(e/2 + f*x/2)**7 - 294*a**2*c**4* 
f*tan(e/2 + f*x/2)**6 + 294*a**2*c**4*f*tan(e/2 + f*x/2)**4 - 168*a**2*c** 
4*f*tan(e/2 + f*x/2)**3 - 63*a**2*c**4*f*tan(e/2 + f*x/2)**2 + 84*a**2*...
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 427 vs. \(2 (105) = 210\).

Time = 0.05 (sec) , antiderivative size = 427, normalized size of antiderivative = 3.85 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4} \, dx=-\frac {2 \, {\left (\frac {3 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {24 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - \frac {76 \, \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {28 \, \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {42 \, \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}} - \frac {56 \, \sin \left (f x + e\right )^{6}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{6}} - \frac {28 \, \sin \left (f x + e\right )^{7}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{7}} + \frac {42 \, \sin \left (f x + e\right )^{8}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{8}} - \frac {21 \, \sin \left (f x + e\right )^{9}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{9}} - 6\right )}}{21 \, {\left (a^{2} c^{4} - \frac {4 \, a^{2} c^{4} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, a^{2} c^{4} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {8 \, a^{2} c^{4} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} - \frac {14 \, a^{2} c^{4} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {14 \, a^{2} c^{4} \sin \left (f x + e\right )^{6}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{6}} - \frac {8 \, a^{2} c^{4} \sin \left (f x + e\right )^{7}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{7}} - \frac {3 \, a^{2} c^{4} \sin \left (f x + e\right )^{8}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{8}} + \frac {4 \, a^{2} c^{4} \sin \left (f x + e\right )^{9}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{9}} - \frac {a^{2} c^{4} \sin \left (f x + e\right )^{10}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{10}}\right )} f} \] Input:

integrate(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^4,x, algorithm="maxima")
 

Output:

-2/21*(3*sin(f*x + e)/(cos(f*x + e) + 1) + 24*sin(f*x + e)^2/(cos(f*x + e) 
 + 1)^2 - 76*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 28*sin(f*x + e)^4/(cos( 
f*x + e) + 1)^4 + 42*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 - 56*sin(f*x + e) 
^6/(cos(f*x + e) + 1)^6 - 28*sin(f*x + e)^7/(cos(f*x + e) + 1)^7 + 42*sin( 
f*x + e)^8/(cos(f*x + e) + 1)^8 - 21*sin(f*x + e)^9/(cos(f*x + e) + 1)^9 - 
 6)/((a^2*c^4 - 4*a^2*c^4*sin(f*x + e)/(cos(f*x + e) + 1) + 3*a^2*c^4*sin( 
f*x + e)^2/(cos(f*x + e) + 1)^2 + 8*a^2*c^4*sin(f*x + e)^3/(cos(f*x + e) + 
 1)^3 - 14*a^2*c^4*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 14*a^2*c^4*sin(f* 
x + e)^6/(cos(f*x + e) + 1)^6 - 8*a^2*c^4*sin(f*x + e)^7/(cos(f*x + e) + 1 
)^7 - 3*a^2*c^4*sin(f*x + e)^8/(cos(f*x + e) + 1)^8 + 4*a^2*c^4*sin(f*x + 
e)^9/(cos(f*x + e) + 1)^9 - a^2*c^4*sin(f*x + e)^10/(cos(f*x + e) + 1)^10) 
*f)
 

Giac [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.36 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4} \, dx=-\frac {\frac {7 \, {\left (9 \, \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 15 \, \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 8\right )}}{a^{2} c^{4} {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}} + \frac {273 \, \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6} - 1155 \, \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{5} + 2450 \, \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2870 \, \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 2037 \, \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 791 \, \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 152}{a^{2} c^{4} {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{7}}}{168 \, f} \] Input:

integrate(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^4,x, algorithm="giac")
 

Output:

-1/168*(7*(9*tan(1/2*f*x + 1/2*e)^2 + 15*tan(1/2*f*x + 1/2*e) + 8)/(a^2*c^ 
4*(tan(1/2*f*x + 1/2*e) + 1)^3) + (273*tan(1/2*f*x + 1/2*e)^6 - 1155*tan(1 
/2*f*x + 1/2*e)^5 + 2450*tan(1/2*f*x + 1/2*e)^4 - 2870*tan(1/2*f*x + 1/2*e 
)^3 + 2037*tan(1/2*f*x + 1/2*e)^2 - 791*tan(1/2*f*x + 1/2*e) + 152)/(a^2*c 
^4*(tan(1/2*f*x + 1/2*e) - 1)^7))/f
 

Mupad [B] (verification not implemented)

Time = 17.26 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.07 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4} \, dx=-\frac {\frac {\sin \left (e+f\,x\right )}{3}+\frac {4\,\cos \left (2\,e+2\,f\,x\right )}{21}+\frac {2\,\cos \left (4\,e+4\,f\,x\right )}{21}+\frac {\sin \left (3\,e+3\,f\,x\right )}{14}-\frac {\sin \left (5\,e+5\,f\,x\right )}{42}}{a^2\,c^4\,f\,\left (\frac {\cos \left (5\,e+5\,f\,x\right )}{16}-\frac {3\,\cos \left (3\,e+3\,f\,x\right )}{16}-\frac {7\,\cos \left (e+f\,x\right )}{8}+\frac {\sin \left (2\,e+2\,f\,x\right )}{2}+\frac {\sin \left (4\,e+4\,f\,x\right )}{4}\right )} \] Input:

int(1/((a + a*sin(e + f*x))^2*(c - c*sin(e + f*x))^4),x)
 

Output:

-(sin(e + f*x)/3 + (4*cos(2*e + 2*f*x))/21 + (2*cos(4*e + 4*f*x))/21 + sin 
(3*e + 3*f*x)/14 - sin(5*e + 5*f*x)/42)/(a^2*c^4*f*(cos(5*e + 5*f*x)/16 - 
(3*cos(3*e + 3*f*x))/16 - (7*cos(e + f*x))/8 + sin(2*e + 2*f*x)/2 + sin(4* 
e + 4*f*x)/4))
                                                                                    
                                                                                    
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.38 \[ \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4} \, dx=\frac {-9 \cos \left (f x +e \right ) \sin \left (f x +e \right )^{4}+18 \cos \left (f x +e \right ) \sin \left (f x +e \right )^{3}-18 \cos \left (f x +e \right ) \sin \left (f x +e \right )+9 \cos \left (f x +e \right )+16 \sin \left (f x +e \right )^{5}-32 \sin \left (f x +e \right )^{4}-8 \sin \left (f x +e \right )^{3}+48 \sin \left (f x +e \right )^{2}-18 \sin \left (f x +e \right )-12}{42 \cos \left (f x +e \right ) a^{2} c^{4} f \left (\sin \left (f x +e \right )^{4}-2 \sin \left (f x +e \right )^{3}+2 \sin \left (f x +e \right )-1\right )} \] Input:

int(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^4,x)
 

Output:

( - 9*cos(e + f*x)*sin(e + f*x)**4 + 18*cos(e + f*x)*sin(e + f*x)**3 - 18* 
cos(e + f*x)*sin(e + f*x) + 9*cos(e + f*x) + 16*sin(e + f*x)**5 - 32*sin(e 
 + f*x)**4 - 8*sin(e + f*x)**3 + 48*sin(e + f*x)**2 - 18*sin(e + f*x) - 12 
)/(42*cos(e + f*x)*a**2*c**4*f*(sin(e + f*x)**4 - 2*sin(e + f*x)**3 + 2*si 
n(e + f*x) - 1))