\(\int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx\) [313]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 156 \[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {a^2 \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{16 \sqrt {2} c^{7/2} f}+\frac {a^2 c \cos ^3(e+f x)}{3 f (c-c \sin (e+f x))^{9/2}}-\frac {a^2 \cos (e+f x)}{4 c f (c-c \sin (e+f x))^{5/2}}+\frac {a^2 \cos (e+f x)}{16 c^2 f (c-c \sin (e+f x))^{3/2}} \] Output:

1/32*a^2*arctanh(1/2*c^(1/2)*cos(f*x+e)*2^(1/2)/(c-c*sin(f*x+e))^(1/2))*2^ 
(1/2)/c^(7/2)/f+1/3*a^2*c*cos(f*x+e)^3/f/(c-c*sin(f*x+e))^(9/2)-1/4*a^2*co 
s(f*x+e)/c/f/(c-c*sin(f*x+e))^(5/2)+1/16*a^2*cos(f*x+e)/c^2/f/(c-c*sin(f*x 
+e))^(3/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 4.17 (sec) , antiderivative size = 307, normalized size of antiderivative = 1.97 \[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {a^2 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (32 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )-28 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3+3 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^5-(3+3 i) \sqrt [4]{-1} \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt [4]{-1} \left (1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^6+64 \sin \left (\frac {1}{2} (e+f x)\right )-56 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^2 \sin \left (\frac {1}{2} (e+f x)\right )+6 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^4 \sin \left (\frac {1}{2} (e+f x)\right )\right ) (1+\sin (e+f x))^2}{48 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^4 (c-c \sin (e+f x))^{7/2}} \] Input:

Integrate[(a + a*Sin[e + f*x])^2/(c - c*Sin[e + f*x])^(7/2),x]
 

Output:

(a^2*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(32*(Cos[(e + f*x)/2] - Sin[(e 
+ f*x)/2]) - 28*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3 + 3*(Cos[(e + f*x) 
/2] - Sin[(e + f*x)/2])^5 - (3 + 3*I)*(-1)^(1/4)*ArcTan[(1/2 + I/2)*(-1)^( 
1/4)*(1 + Tan[(e + f*x)/4])]*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^6 + 64* 
Sin[(e + f*x)/2] - 56*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^2*Sin[(e + f*x 
)/2] + 6*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^4*Sin[(e + f*x)/2])*(1 + Si 
n[e + f*x])^2)/(48*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^4*(c - c*Sin[e 
+ f*x])^(7/2))
 

Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.06, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.393, Rules used = {3042, 3215, 3042, 3159, 3042, 3159, 3042, 3129, 3042, 3128, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^2}{(c-c \sin (e+f x))^{7/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^2}{(c-c \sin (e+f x))^{7/2}}dx\)

\(\Big \downarrow \) 3215

\(\displaystyle a^2 c^2 \int \frac {\cos ^4(e+f x)}{(c-c \sin (e+f x))^{11/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \int \frac {\cos (e+f x)^4}{(c-c \sin (e+f x))^{11/2}}dx\)

\(\Big \downarrow \) 3159

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\int \frac {\cos ^2(e+f x)}{(c-c \sin (e+f x))^{7/2}}dx}{2 c^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\int \frac {\cos (e+f x)^2}{(c-c \sin (e+f x))^{7/2}}dx}{2 c^2}\right )\)

\(\Big \downarrow \) 3159

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\int \frac {1}{(c-c \sin (e+f x))^{3/2}}dx}{4 c^2}}{2 c^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\int \frac {1}{(c-c \sin (e+f x))^{3/2}}dx}{4 c^2}}{2 c^2}\right )\)

\(\Big \downarrow \) 3129

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {\int \frac {1}{\sqrt {c-c \sin (e+f x)}}dx}{4 c}+\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}}{4 c^2}}{2 c^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {\int \frac {1}{\sqrt {c-c \sin (e+f x)}}dx}{4 c}+\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}}{4 c^2}}{2 c^2}\right )\)

\(\Big \downarrow \) 3128

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}-\frac {\int \frac {1}{2 c-\frac {c^2 \cos ^2(e+f x)}{c-c \sin (e+f x)}}d\left (-\frac {c \cos (e+f x)}{\sqrt {c-c \sin (e+f x)}}\right )}{2 c f}}{4 c^2}}{2 c^2}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle a^2 c^2 \left (\frac {\cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{9/2}}-\frac {\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {\text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{2 \sqrt {2} c^{3/2} f}+\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}}{4 c^2}}{2 c^2}\right )\)

Input:

Int[(a + a*Sin[e + f*x])^2/(c - c*Sin[e + f*x])^(7/2),x]
 

Output:

a^2*c^2*(Cos[e + f*x]^3/(3*c*f*(c - c*Sin[e + f*x])^(9/2)) - (Cos[e + f*x] 
/(2*c*f*(c - c*Sin[e + f*x])^(5/2)) - (ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqr 
t[2]*Sqrt[c - c*Sin[e + f*x]])]/(2*Sqrt[2]*c^(3/2)*f) + Cos[e + f*x]/(2*f* 
(c - c*Sin[e + f*x])^(3/2)))/(4*c^2))/(2*c^2))
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3129
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[c 
+ d*x]*((a + b*Sin[c + d*x])^n/(a*d*(2*n + 1))), x] + Simp[(n + 1)/(a*(2*n 
+ 1))   Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] 
&& EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
 

rule 3159
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[2*g*(g*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f 
*x])^(m + 1)/(b*f*(2*m + p + 1))), x] + Simp[g^2*((p - 1)/(b^2*(2*m + p + 1 
)))   Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; 
FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] & 
& NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*p]
 

rule 3215
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a^m*c^m   Int[Cos[e + f*x]^(2*m)*(c + 
 d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[ 
b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((Lt 
Q[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))
 
Maple [A] (verified)

Time = 1.06 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.57

method result size
default \(-\frac {a^{2} \left (3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sin \left (f x +e \right )^{3} c^{4}-9 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sin \left (f x +e \right )^{2} c^{4}-6 \left (c \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {5}{2}} c^{\frac {3}{2}}+9 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sin \left (f x +e \right ) c^{4}-32 \left (c \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {3}{2}} c^{\frac {5}{2}}-3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{4}+24 \sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, c^{\frac {7}{2}}\right ) \sqrt {c \left (1+\sin \left (f x +e \right )\right )}}{96 c^{\frac {15}{2}} \left (-1+\sin \left (f x +e \right )\right )^{2} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(245\)
parts \(\text {Expression too large to display}\) \(748\)

Input:

int((a+sin(f*x+e)*a)^2/(c-c*sin(f*x+e))^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-1/96/c^(15/2)*a^2*(3*2^(1/2)*arctanh(1/2*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2) 
/c^(1/2))*sin(f*x+e)^3*c^4-9*2^(1/2)*arctanh(1/2*(c*(1+sin(f*x+e)))^(1/2)* 
2^(1/2)/c^(1/2))*sin(f*x+e)^2*c^4-6*(c*(1+sin(f*x+e)))^(5/2)*c^(3/2)+9*2^( 
1/2)*arctanh(1/2*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2)/c^(1/2))*sin(f*x+e)*c^4- 
32*(c*(1+sin(f*x+e)))^(3/2)*c^(5/2)-3*2^(1/2)*arctanh(1/2*(c*(1+sin(f*x+e) 
))^(1/2)*2^(1/2)/c^(1/2))*c^4+24*(c*(1+sin(f*x+e)))^(1/2)*c^(7/2))*(c*(1+s 
in(f*x+e)))^(1/2)/(-1+sin(f*x+e))^2/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 440 vs. \(2 (133) = 266\).

Time = 0.12 (sec) , antiderivative size = 440, normalized size of antiderivative = 2.82 \[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {3 \, \sqrt {2} {\left (a^{2} \cos \left (f x + e\right )^{4} - 3 \, a^{2} \cos \left (f x + e\right )^{3} - 8 \, a^{2} \cos \left (f x + e\right )^{2} + 4 \, a^{2} \cos \left (f x + e\right ) + 8 \, a^{2} + {\left (a^{2} \cos \left (f x + e\right )^{3} + 4 \, a^{2} \cos \left (f x + e\right )^{2} - 4 \, a^{2} \cos \left (f x + e\right ) - 8 \, a^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt {c} \log \left (-\frac {c \cos \left (f x + e\right )^{2} + 2 \, \sqrt {2} \sqrt {-c \sin \left (f x + e\right ) + c} \sqrt {c} {\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )} + 3 \, c \cos \left (f x + e\right ) + {\left (c \cos \left (f x + e\right ) - 2 \, c\right )} \sin \left (f x + e\right ) + 2 \, c}{\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) - 4 \, {\left (3 \, a^{2} \cos \left (f x + e\right )^{3} + 25 \, a^{2} \cos \left (f x + e\right )^{2} - 10 \, a^{2} \cos \left (f x + e\right ) - 32 \, a^{2} + {\left (3 \, a^{2} \cos \left (f x + e\right )^{2} - 22 \, a^{2} \cos \left (f x + e\right ) - 32 \, a^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{192 \, {\left (c^{4} f \cos \left (f x + e\right )^{4} - 3 \, c^{4} f \cos \left (f x + e\right )^{3} - 8 \, c^{4} f \cos \left (f x + e\right )^{2} + 4 \, c^{4} f \cos \left (f x + e\right ) + 8 \, c^{4} f + {\left (c^{4} f \cos \left (f x + e\right )^{3} + 4 \, c^{4} f \cos \left (f x + e\right )^{2} - 4 \, c^{4} f \cos \left (f x + e\right ) - 8 \, c^{4} f\right )} \sin \left (f x + e\right )\right )}} \] Input:

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(7/2),x, algorithm="fricas")
 

Output:

1/192*(3*sqrt(2)*(a^2*cos(f*x + e)^4 - 3*a^2*cos(f*x + e)^3 - 8*a^2*cos(f* 
x + e)^2 + 4*a^2*cos(f*x + e) + 8*a^2 + (a^2*cos(f*x + e)^3 + 4*a^2*cos(f* 
x + e)^2 - 4*a^2*cos(f*x + e) - 8*a^2)*sin(f*x + e))*sqrt(c)*log(-(c*cos(f 
*x + e)^2 + 2*sqrt(2)*sqrt(-c*sin(f*x + e) + c)*sqrt(c)*(cos(f*x + e) + si 
n(f*x + e) + 1) + 3*c*cos(f*x + e) + (c*cos(f*x + e) - 2*c)*sin(f*x + e) + 
 2*c)/(cos(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2 
)) - 4*(3*a^2*cos(f*x + e)^3 + 25*a^2*cos(f*x + e)^2 - 10*a^2*cos(f*x + e) 
 - 32*a^2 + (3*a^2*cos(f*x + e)^2 - 22*a^2*cos(f*x + e) - 32*a^2)*sin(f*x 
+ e))*sqrt(-c*sin(f*x + e) + c))/(c^4*f*cos(f*x + e)^4 - 3*c^4*f*cos(f*x + 
 e)^3 - 8*c^4*f*cos(f*x + e)^2 + 4*c^4*f*cos(f*x + e) + 8*c^4*f + (c^4*f*c 
os(f*x + e)^3 + 4*c^4*f*cos(f*x + e)^2 - 4*c^4*f*cos(f*x + e) - 8*c^4*f)*s 
in(f*x + e))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\text {Timed out} \] Input:

integrate((a+a*sin(f*x+e))**2/(c-c*sin(f*x+e))**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(7/2),x, algorithm="maxima")
 

Output:

integrate((a*sin(f*x + e) + a)^2/(-c*sin(f*x + e) + c)^(7/2), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(7/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^2}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{7/2}} \,d x \] Input:

int((a + a*sin(e + f*x))^2/(c - c*sin(e + f*x))^(7/2),x)
 

Output:

int((a + a*sin(e + f*x))^2/(c - c*sin(e + f*x))^(7/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {\sqrt {c}\, a^{2} \left (\int \frac {\sqrt {-\sin \left (f x +e \right )+1}}{\sin \left (f x +e \right )^{4}-4 \sin \left (f x +e \right )^{3}+6 \sin \left (f x +e \right )^{2}-4 \sin \left (f x +e \right )+1}d x +\int \frac {\sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{2}}{\sin \left (f x +e \right )^{4}-4 \sin \left (f x +e \right )^{3}+6 \sin \left (f x +e \right )^{2}-4 \sin \left (f x +e \right )+1}d x +2 \left (\int \frac {\sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )}{\sin \left (f x +e \right )^{4}-4 \sin \left (f x +e \right )^{3}+6 \sin \left (f x +e \right )^{2}-4 \sin \left (f x +e \right )+1}d x \right )\right )}{c^{4}} \] Input:

int((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(7/2),x)
 

Output:

(sqrt(c)*a**2*(int(sqrt( - sin(e + f*x) + 1)/(sin(e + f*x)**4 - 4*sin(e + 
f*x)**3 + 6*sin(e + f*x)**2 - 4*sin(e + f*x) + 1),x) + int((sqrt( - sin(e 
+ f*x) + 1)*sin(e + f*x)**2)/(sin(e + f*x)**4 - 4*sin(e + f*x)**3 + 6*sin( 
e + f*x)**2 - 4*sin(e + f*x) + 1),x) + 2*int((sqrt( - sin(e + f*x) + 1)*si 
n(e + f*x))/(sin(e + f*x)**4 - 4*sin(e + f*x)**3 + 6*sin(e + f*x)**2 - 4*s 
in(e + f*x) + 1),x)))/c**4