\(\int \frac {(a+a \sin (e+f x))^{5/2}}{\sqrt {c-c \sin (e+f x)}} \, dx\) [370]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 141 \[ \int \frac {(a+a \sin (e+f x))^{5/2}}{\sqrt {c-c \sin (e+f x)}} \, dx=-\frac {4 a^3 \cos (e+f x) \log (1-\sin (e+f x))}{f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {2 a^2 \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{f \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}} \] Output:

-4*a^3*cos(f*x+e)*ln(1-sin(f*x+e))/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e 
))^(1/2)-2*a^2*cos(f*x+e)*(a+a*sin(f*x+e))^(1/2)/f/(c-c*sin(f*x+e))^(1/2)- 
1/2*a*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)/f/(c-c*sin(f*x+e))^(1/2)
 

Mathematica [A] (verified)

Time = 13.25 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.90 \[ \int \frac {(a+a \sin (e+f x))^{5/2}}{\sqrt {c-c \sin (e+f x)}} \, dx=-\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) (a (1+\sin (e+f x)))^{5/2} \left (-\cos (2 (e+f x))+32 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )+12 \sin (e+f x)\right )}{4 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^5 \sqrt {c-c \sin (e+f x)}} \] Input:

Integrate[(a + a*Sin[e + f*x])^(5/2)/Sqrt[c - c*Sin[e + f*x]],x]
 

Output:

-1/4*((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(a*(1 + Sin[e + f*x]))^(5/2)*( 
-Cos[2*(e + f*x)] + 32*Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] + 12*Sin[e 
 + f*x]))/(f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^5*Sqrt[c - c*Sin[e + f* 
x]])
 

Rubi [A] (verified)

Time = 0.79 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.02, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {3042, 3219, 3042, 3219, 3042, 3216, 3042, 3146, 16}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^{5/2}}{\sqrt {c-c \sin (e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^{5/2}}{\sqrt {c-c \sin (e+f x)}}dx\)

\(\Big \downarrow \) 3219

\(\displaystyle 2 a \int \frac {(\sin (e+f x) a+a)^{3/2}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 a \int \frac {(\sin (e+f x) a+a)^{3/2}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\)

\(\Big \downarrow \) 3219

\(\displaystyle 2 a \left (2 a \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 a \left (2 a \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\)

\(\Big \downarrow \) 3216

\(\displaystyle 2 a \left (\frac {2 a^2 c \cos (e+f x) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 a \left (\frac {2 a^2 c \cos (e+f x) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\)

\(\Big \downarrow \) 3146

\(\displaystyle 2 a \left (-\frac {2 a^2 \cos (e+f x) \int \frac {1}{c-c \sin (e+f x)}d(-c \sin (e+f x))}{f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\)

\(\Big \downarrow \) 16

\(\displaystyle 2 a \left (-\frac {2 a^2 \cos (e+f x) \log (c-c \sin (e+f x))}{f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\)

Input:

Int[(a + a*Sin[e + f*x])^(5/2)/Sqrt[c - c*Sin[e + f*x]],x]
 

Output:

-1/2*(a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(f*Sqrt[c - c*Sin[e + f*x 
]]) + 2*a*((-2*a^2*Cos[e + f*x]*Log[c - c*Sin[e + f*x]])/(f*Sqrt[a + a*Sin 
[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) - (a*Cos[e + f*x]*Sqrt[a + a*Sin[e + 
f*x]])/(f*Sqrt[c - c*Sin[e + f*x]]))
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3146
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_.), x_Symbol] :> Simp[1/(b^p*f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x 
)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && I 
ntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/ 
2])
 

rule 3216
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)]], x_Symbol] :> Simp[a*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x 
]]*Sqrt[c + d*Sin[e + f*x]]))   Int[Cos[e + f*x]/(c + d*Sin[e + f*x]), x], 
x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0 
]
 

rule 3219
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[a*((2*m - 1)/(m + n 
))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; Fre 
eQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I 
GtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m]) &&  !( 
ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])
 
Maple [A] (verified)

Time = 1.90 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.24

method result size
default \(-\frac {\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right ) \left (\cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}-4 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}-4 \ln \left (\frac {2}{\cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+1}\right )+4 \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+1\right )+4 \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )-1\right )+3\right ) \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, a^{2} \sqrt {4}}{f \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}}\) \(175\)

Input:

int((a+sin(f*x+e)*a)^(5/2)/(c-c*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/f*cot(1/4*Pi+1/2*f*x+1/2*e)*(cos(1/4*Pi+1/2*f*x+1/2*e)^4-4*cos(1/4*Pi+1 
/2*f*x+1/2*e)^2-4*ln(2/(cos(1/4*Pi+1/2*f*x+1/2*e)+1))+4*ln(-cot(1/4*Pi+1/2 
*f*x+1/2*e)+csc(1/4*Pi+1/2*f*x+1/2*e)+1)+4*ln(-cot(1/4*Pi+1/2*f*x+1/2*e)+c 
sc(1/4*Pi+1/2*f*x+1/2*e)-1)+3)*(a*sin(1/4*Pi+1/2*f*x+1/2*e)^2)^(1/2)*a^2/( 
c*cos(1/4*Pi+1/2*f*x+1/2*e)^2)^(1/2)*4^(1/2)
 

Fricas [F]

\[ \int \frac {(a+a \sin (e+f x))^{5/2}}{\sqrt {c-c \sin (e+f x)}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}}}{\sqrt {-c \sin \left (f x + e\right ) + c}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="fric 
as")
 

Output:

integral((a^2*cos(f*x + e)^2 - 2*a^2*sin(f*x + e) - 2*a^2)*sqrt(a*sin(f*x 
+ e) + a)*sqrt(-c*sin(f*x + e) + c)/(c*sin(f*x + e) - c), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^{5/2}}{\sqrt {c-c \sin (e+f x)}} \, dx=\text {Timed out} \] Input:

integrate((a+a*sin(f*x+e))**(5/2)/(c-c*sin(f*x+e))**(1/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+a \sin (e+f x))^{5/2}}{\sqrt {c-c \sin (e+f x)}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}}}{\sqrt {-c \sin \left (f x + e\right ) + c}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="maxi 
ma")
 

Output:

integrate((a*sin(f*x + e) + a)^(5/2)/sqrt(-c*sin(f*x + e) + c), x)
 

Giac [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.91 \[ \int \frac {(a+a \sin (e+f x))^{5/2}}{\sqrt {c-c \sin (e+f x)}} \, dx=\frac {2 \, a^{\frac {5}{2}} \sqrt {c} {\left (\frac {c \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 2 \, c \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{c^{2}} + \frac {2 \, \log \left (-\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1\right )}{c \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}\right )} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{f} \] Input:

integrate((a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="giac 
")
 

Output:

2*a^(5/2)*sqrt(c)*((c*cos(-1/4*pi + 1/2*f*x + 1/2*e)^4*sgn(sin(-1/4*pi + 1 
/2*f*x + 1/2*e)) + 2*c*cos(-1/4*pi + 1/2*f*x + 1/2*e)^2*sgn(sin(-1/4*pi + 
1/2*f*x + 1/2*e)))/c^2 + 2*log(-cos(-1/4*pi + 1/2*f*x + 1/2*e)^2 + 1)/(c*s 
gn(sin(-1/4*pi + 1/2*f*x + 1/2*e))))*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))/f
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^{5/2}}{\sqrt {c-c \sin (e+f x)}} \, dx=\int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}}{\sqrt {c-c\,\sin \left (e+f\,x\right )}} \,d x \] Input:

int((a + a*sin(e + f*x))^(5/2)/(c - c*sin(e + f*x))^(1/2),x)
 

Output:

int((a + a*sin(e + f*x))^(5/2)/(c - c*sin(e + f*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {(a+a \sin (e+f x))^{5/2}}{\sqrt {c-c \sin (e+f x)}} \, dx=\frac {\sqrt {c}\, \sqrt {a}\, a^{2} \left (-\left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{2}}{\sin \left (f x +e \right )-1}d x \right )-2 \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )}{\sin \left (f x +e \right )-1}d x \right )-\left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}}{\sin \left (f x +e \right )-1}d x \right )\right )}{c} \] Input:

int((a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(1/2),x)
 

Output:

(sqrt(c)*sqrt(a)*a**2*( - int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) 
 + 1)*sin(e + f*x)**2)/(sin(e + f*x) - 1),x) - 2*int((sqrt(sin(e + f*x) + 
1)*sqrt( - sin(e + f*x) + 1)*sin(e + f*x))/(sin(e + f*x) - 1),x) - int((sq 
rt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1))/(sin(e + f*x) - 1),x)))/c