\(\int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{3/2}} \, dx\) [383]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 192 \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=\frac {a \cos (e+f x) (a+a \sin (e+f x))^{5/2}}{f (c-c \sin (e+f x))^{3/2}}+\frac {12 a^4 \cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {6 a^3 \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{c f \sqrt {c-c \sin (e+f x)}}+\frac {3 a^2 \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 c f \sqrt {c-c \sin (e+f x)}} \] Output:

a*cos(f*x+e)*(a+a*sin(f*x+e))^(5/2)/f/(c-c*sin(f*x+e))^(3/2)+12*a^4*cos(f* 
x+e)*ln(1-sin(f*x+e))/c/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)+6* 
a^3*cos(f*x+e)*(a+a*sin(f*x+e))^(1/2)/c/f/(c-c*sin(f*x+e))^(1/2)+3/2*a^2*c 
os(f*x+e)*(a+a*sin(f*x+e))^(3/2)/c/f/(c-c*sin(f*x+e))^(1/2)
 

Mathematica [A] (verified)

Time = 10.24 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.93 \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=-\frac {a^3 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {a (1+\sin (e+f x))} \left (44+18 \cos (2 (e+f x))+192 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )+\left (39-192 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )\right ) \sin (e+f x)+\sin (3 (e+f x))\right )}{8 c f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (-1+\sin (e+f x)) \sqrt {c-c \sin (e+f x)}} \] Input:

Integrate[(a + a*Sin[e + f*x])^(7/2)/(c - c*Sin[e + f*x])^(3/2),x]
 

Output:

-1/8*(a^3*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*Sqrt[a*(1 + Sin[e + f*x])] 
*(44 + 18*Cos[2*(e + f*x)] + 192*Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] 
+ (39 - 192*Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]])*Sin[e + f*x] + Sin[3 
*(e + f*x)]))/(c*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[e + f*x 
])*Sqrt[c - c*Sin[e + f*x]])
 

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 191, normalized size of antiderivative = 0.99, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.367, Rules used = {3042, 3218, 3042, 3219, 3042, 3219, 3042, 3216, 3042, 3146, 16}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^{7/2}}{(c-c \sin (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^{7/2}}{(c-c \sin (e+f x))^{3/2}}dx\)

\(\Big \downarrow \) 3218

\(\displaystyle \frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {3 a \int \frac {(\sin (e+f x) a+a)^{5/2}}{\sqrt {c-c \sin (e+f x)}}dx}{c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {3 a \int \frac {(\sin (e+f x) a+a)^{5/2}}{\sqrt {c-c \sin (e+f x)}}dx}{c}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {3 a \left (2 a \int \frac {(\sin (e+f x) a+a)^{3/2}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )}{c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {3 a \left (2 a \int \frac {(\sin (e+f x) a+a)^{3/2}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )}{c}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {3 a \left (2 a \left (2 a \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )}{c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {3 a \left (2 a \left (2 a \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )}{c}\)

\(\Big \downarrow \) 3216

\(\displaystyle \frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {3 a \left (2 a \left (\frac {2 a^2 c \cos (e+f x) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )}{c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {3 a \left (2 a \left (\frac {2 a^2 c \cos (e+f x) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )}{c}\)

\(\Big \downarrow \) 3146

\(\displaystyle \frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {3 a \left (2 a \left (-\frac {2 a^2 \cos (e+f x) \int \frac {1}{c-c \sin (e+f x)}d(-c \sin (e+f x))}{f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )}{c}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {3 a \left (2 a \left (-\frac {2 a^2 \cos (e+f x) \log (c-c \sin (e+f x))}{f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )}{c}\)

Input:

Int[(a + a*Sin[e + f*x])^(7/2)/(c - c*Sin[e + f*x])^(3/2),x]
 

Output:

(a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(f*(c - c*Sin[e + f*x])^(3/2)) 
 - (3*a*(-1/2*(a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(f*Sqrt[c - c*Si 
n[e + f*x]]) + 2*a*((-2*a^2*Cos[e + f*x]*Log[c - c*Sin[e + f*x]])/(f*Sqrt[ 
a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) - (a*Cos[e + f*x]*Sqrt[a + a 
*Sin[e + f*x]])/(f*Sqrt[c - c*Sin[e + f*x]]))))/c
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3146
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_.), x_Symbol] :> Simp[1/(b^p*f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x 
)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && I 
ntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/ 
2])
 

rule 3216
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)]], x_Symbol] :> Simp[a*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x 
]]*Sqrt[c + d*Sin[e + f*x]]))   Int[Cos[e + f*x]/(c + d*Sin[e + f*x]), x], 
x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0 
]
 

rule 3218
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(2*n + 1))), x] - Simp[b*((2*m - 1)/(d*( 
2*n + 1)))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), 
 x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b 
^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] &&  !(ILtQ[m + n, 0] && GtQ[2*m + 
n + 1, 0])
 

rule 3219
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[a*((2*m - 1)/(m + n 
))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; Fre 
eQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I 
GtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m]) &&  !( 
ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])
 
Maple [A] (verified)

Time = 1.93 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.29

method result size
default \(\frac {\sec \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right ) \csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right ) \left (\cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{6}-6 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}-12 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2} \ln \left (\frac {2}{\cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+1}\right )+12 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2} \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+1\right )+12 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2} \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )-1\right )+3 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}+2\right ) a^{3} \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \sqrt {4}}{f \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, c}\) \(247\)

Input:

int((a+sin(f*x+e)*a)^(7/2)/(c-c*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/f*sec(1/4*Pi+1/2*f*x+1/2*e)*csc(1/4*Pi+1/2*f*x+1/2*e)*(cos(1/4*Pi+1/2*f* 
x+1/2*e)^6-6*cos(1/4*Pi+1/2*f*x+1/2*e)^4-12*cos(1/4*Pi+1/2*f*x+1/2*e)^2*ln 
(2/(cos(1/4*Pi+1/2*f*x+1/2*e)+1))+12*cos(1/4*Pi+1/2*f*x+1/2*e)^2*ln(-cot(1 
/4*Pi+1/2*f*x+1/2*e)+csc(1/4*Pi+1/2*f*x+1/2*e)+1)+12*cos(1/4*Pi+1/2*f*x+1/ 
2*e)^2*ln(-cot(1/4*Pi+1/2*f*x+1/2*e)+csc(1/4*Pi+1/2*f*x+1/2*e)-1)+3*cos(1/ 
4*Pi+1/2*f*x+1/2*e)^2+2)*a^3*(a*sin(1/4*Pi+1/2*f*x+1/2*e)^2)^(1/2)/(c*cos( 
1/4*Pi+1/2*f*x+1/2*e)^2)^(1/2)/c*4^(1/2)
 

Fricas [F]

\[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {7}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="fric 
as")
 

Output:

integral((3*a^3*cos(f*x + e)^2 - 4*a^3 + (a^3*cos(f*x + e)^2 - 4*a^3)*sin( 
f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(c^2*cos(f*x 
+ e)^2 + 2*c^2*sin(f*x + e) - 2*c^2), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate((a+a*sin(f*x+e))**(7/2)/(c-c*sin(f*x+e))**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {7}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="maxi 
ma")
 

Output:

integrate((a*sin(f*x + e) + a)^(7/2)/(-c*sin(f*x + e) + c)^(3/2), x)
                                                                                    
                                                                                    
 

Giac [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.89 \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=-\frac {2 \, a^{\frac {7}{2}} \sqrt {c} {\left (\frac {6 \, \log \left (-\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1\right )}{c^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {c^{2} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 4 \, c^{2} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{c^{4}} - \frac {2}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1\right )} c^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}\right )} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{f} \] Input:

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac 
")
 

Output:

-2*a^(7/2)*sqrt(c)*(6*log(-cos(-1/4*pi + 1/2*f*x + 1/2*e)^2 + 1)/(c^2*sgn( 
sin(-1/4*pi + 1/2*f*x + 1/2*e))) + (c^2*cos(-1/4*pi + 1/2*f*x + 1/2*e)^4*s 
gn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) + 4*c^2*cos(-1/4*pi + 1/2*f*x + 1/2*e)^ 
2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)))/c^4 - 2/((cos(-1/4*pi + 1/2*f*x + 1 
/2*e)^2 - 1)*c^2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))))*sgn(cos(-1/4*pi + 1 
/2*f*x + 1/2*e))/f
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=\int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{7/2}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \] Input:

int((a + a*sin(e + f*x))^(7/2)/(c - c*sin(e + f*x))^(3/2),x)
 

Output:

int((a + a*sin(e + f*x))^(7/2)/(c - c*sin(e + f*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=\frac {\sqrt {c}\, \sqrt {a}\, a^{3} \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{3}}{\sin \left (f x +e \right )^{2}-2 \sin \left (f x +e \right )+1}d x +3 \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{2}}{\sin \left (f x +e \right )^{2}-2 \sin \left (f x +e \right )+1}d x \right )+3 \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )}{\sin \left (f x +e \right )^{2}-2 \sin \left (f x +e \right )+1}d x \right )+\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}}{\sin \left (f x +e \right )^{2}-2 \sin \left (f x +e \right )+1}d x \right )}{c^{2}} \] Input:

int((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(3/2),x)
 

Output:

(sqrt(c)*sqrt(a)*a**3*(int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 
1)*sin(e + f*x)**3)/(sin(e + f*x)**2 - 2*sin(e + f*x) + 1),x) + 3*int((sqr 
t(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1)*sin(e + f*x)**2)/(sin(e + f* 
x)**2 - 2*sin(e + f*x) + 1),x) + 3*int((sqrt(sin(e + f*x) + 1)*sqrt( - sin 
(e + f*x) + 1)*sin(e + f*x))/(sin(e + f*x)**2 - 2*sin(e + f*x) + 1),x) + i 
nt((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1))/(sin(e + f*x)**2 - 2 
*sin(e + f*x) + 1),x)))/c**2