\(\int \frac {(a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^{5/2}} \, dx\) [424]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 74 \[ \int \frac {(a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^{5/2}} \, dx=\frac {\cos (e+f x) \operatorname {Hypergeometric2F1}\left (3,\frac {1}{2}+m,\frac {3}{2}+m,\frac {1}{2} (1+\sin (e+f x))\right ) (a+a \sin (e+f x))^m}{4 c^2 f (1+2 m) \sqrt {c-c \sin (e+f x)}} \] Output:

1/4*cos(f*x+e)*hypergeom([3, 1/2+m],[3/2+m],1/2+1/2*sin(f*x+e))*(a+a*sin(f 
*x+e))^m/c^2/f/(1+2*m)/(c-c*sin(f*x+e))^(1/2)
 

Mathematica [A] (verified)

Time = 13.20 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.97 \[ \int \frac {(a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^{5/2}} \, dx=\frac {\cos (e+f x) \operatorname {Hypergeometric2F1}\left (3,\frac {1}{2}+m,\frac {3}{2}+m,\frac {1}{2} (1+\sin (e+f x))\right ) (a (1+\sin (e+f x)))^m}{4 c^2 (f+2 f m) \sqrt {c-c \sin (e+f x)}} \] Input:

Integrate[(a + a*Sin[e + f*x])^m/(c - c*Sin[e + f*x])^(5/2),x]
 

Output:

(Cos[e + f*x]*Hypergeometric2F1[3, 1/2 + m, 3/2 + m, (1 + Sin[e + f*x])/2] 
*(a*(1 + Sin[e + f*x]))^m)/(4*c^2*(f + 2*f*m)*Sqrt[c - c*Sin[e + f*x]])
 

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.07, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {3042, 3224, 3042, 3146, 78}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^m}{(c-c \sin (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^m}{(c-c \sin (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 3224

\(\displaystyle \frac {\cos (e+f x) \int \sec ^5(e+f x) (\sin (e+f x) a+a)^{m+\frac {5}{2}}dx}{a^2 c^2 \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\cos (e+f x) \int \frac {(\sin (e+f x) a+a)^{m+\frac {5}{2}}}{\cos (e+f x)^5}dx}{a^2 c^2 \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}\)

\(\Big \downarrow \) 3146

\(\displaystyle \frac {a^3 \cos (e+f x) \int \frac {(\sin (e+f x) a+a)^{m-\frac {1}{2}}}{(a-a \sin (e+f x))^3}d(a \sin (e+f x))}{c^2 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}\)

\(\Big \downarrow \) 78

\(\displaystyle \frac {\cos (e+f x) (a \sin (e+f x)+a)^m \operatorname {Hypergeometric2F1}\left (3,m+\frac {1}{2},m+\frac {3}{2},\frac {\sin (e+f x) a+a}{2 a}\right )}{4 c^2 f (2 m+1) \sqrt {c-c \sin (e+f x)}}\)

Input:

Int[(a + a*Sin[e + f*x])^m/(c - c*Sin[e + f*x])^(5/2),x]
 

Output:

(Cos[e + f*x]*Hypergeometric2F1[3, 1/2 + m, 3/2 + m, (a + a*Sin[e + f*x])/ 
(2*a)]*(a + a*Sin[e + f*x])^m)/(4*c^2*f*(1 + 2*m)*Sqrt[c - c*Sin[e + f*x]] 
)
 

Defintions of rubi rules used

rule 78
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b 
*c - a*d)^n*((a + b*x)^(m + 1)/(b^(n + 1)*(m + 1)))*Hypergeometric2F1[-n, m 
 + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m}, x] 
 &&  !IntegerQ[m] && IntegerQ[n]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3146
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_.), x_Symbol] :> Simp[1/(b^p*f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x 
)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && I 
ntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/ 
2])
 

rule 3224
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[a^IntPart[m]*c^IntPart[m]*(a + b*Sin[e 
+ f*x])^FracPart[m]*((c + d*Sin[e + f*x])^FracPart[m]/Cos[e + f*x]^(2*FracP 
art[m]))   Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; F 
reeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] 
 && (FractionQ[m] ||  !FractionQ[n])
 
Maple [F]

\[\int \frac {\left (a +\sin \left (f x +e \right ) a \right )^{m}}{\left (c -c \sin \left (f x +e \right )\right )^{\frac {5}{2}}}d x\]

Input:

int((a+sin(f*x+e)*a)^m/(c-c*sin(f*x+e))^(5/2),x)
 

Output:

int((a+sin(f*x+e)*a)^m/(c-c*sin(f*x+e))^(5/2),x)
 

Fricas [F]

\[ \int \frac {(a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^(5/2),x, algorithm="fricas")
 

Output:

integral(-sqrt(-c*sin(f*x + e) + c)*(a*sin(f*x + e) + a)^m/(3*c^3*cos(f*x 
+ e)^2 - 4*c^3 - (c^3*cos(f*x + e)^2 - 4*c^3)*sin(f*x + e)), x)
 

Sympy [F]

\[ \int \frac {(a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{m}}{\left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {5}{2}}}\, dx \] Input:

integrate((a+a*sin(f*x+e))**m/(c-c*sin(f*x+e))**(5/2),x)
 

Output:

Integral((a*(sin(e + f*x) + 1))**m/(-c*(sin(e + f*x) - 1))**(5/2), x)
 

Maxima [F]

\[ \int \frac {(a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^(5/2),x, algorithm="maxima")
 

Output:

integrate((a*sin(f*x + e) + a)^m/(-c*sin(f*x + e) + c)^(5/2), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^{5/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^(5/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error index.cc index_gcd Error: Bad 
 Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^m}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \] Input:

int((a + a*sin(e + f*x))^m/(c - c*sin(e + f*x))^(5/2),x)
 

Output:

int((a + a*sin(e + f*x))^m/(c - c*sin(e + f*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {(a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^{5/2}} \, dx=-\frac {\sqrt {c}\, \left (\int \frac {\left (a +a \sin \left (f x +e \right )\right )^{m} \sqrt {-\sin \left (f x +e \right )+1}}{\sin \left (f x +e \right )^{3}-3 \sin \left (f x +e \right )^{2}+3 \sin \left (f x +e \right )-1}d x \right )}{c^{3}} \] Input:

int((a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^(5/2),x)
 

Output:

( - sqrt(c)*int(((sin(e + f*x)*a + a)**m*sqrt( - sin(e + f*x) + 1))/(sin(e 
 + f*x)**3 - 3*sin(e + f*x)**2 + 3*sin(e + f*x) - 1),x))/c**3