\(\int (a+a \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx\) [492]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 179 \[ \int (a+a \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=-\frac {2 a \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}+\frac {2 a (c+3 d) E\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {c+d \sin (e+f x)}}{3 d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {2 a \left (c^2-d^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right ),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{3 d f \sqrt {c+d \sin (e+f x)}} \] Output:

-2/3*a*cos(f*x+e)*(c+d*sin(f*x+e))^(1/2)/f-2/3*a*(c+3*d)*EllipticE(cos(1/2 
*e+1/4*Pi+1/2*f*x),2^(1/2)*(d/(c+d))^(1/2))*(c+d*sin(f*x+e))^(1/2)/d/f/((c 
+d*sin(f*x+e))/(c+d))^(1/2)-2/3*a*(c^2-d^2)*InverseJacobiAM(1/2*e-1/4*Pi+1 
/2*f*x,2^(1/2)*(d/(c+d))^(1/2))*((c+d*sin(f*x+e))/(c+d))^(1/2)/d/f/(c+d*si 
n(f*x+e))^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 6.68 (sec) , antiderivative size = 1736, normalized size of antiderivative = 9.70 \[ \int (a+a \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx =\text {Too large to display} \] Input:

Integrate[(a + a*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]],x]
 

Output:

a*((c*Sec[e]*(1 + Sin[e + f*x])*(-((AppellF1[-1/2, -1/2, -1/2, 1/2, -((Csc 
[e]*(c + d*Cos[f*x - ArcTan[Cot[e]]]*Sqrt[1 + Cot[e]^2]*Sin[e]))/(d*Sqrt[1 
 + Cot[e]^2]*(1 - (c*Csc[e])/(d*Sqrt[1 + Cot[e]^2])))), -((Csc[e]*(c + d*C 
os[f*x - ArcTan[Cot[e]]]*Sqrt[1 + Cot[e]^2]*Sin[e]))/(d*Sqrt[1 + Cot[e]^2] 
*(-1 - (c*Csc[e])/(d*Sqrt[1 + Cot[e]^2]))))]*Cot[e]*Sin[f*x - ArcTan[Cot[e 
]]])/(Sqrt[1 + Cot[e]^2]*Sqrt[(d*Sqrt[1 + Cot[e]^2] + d*Cos[f*x - ArcTan[C 
ot[e]]]*Sqrt[1 + Cot[e]^2])/(d*Sqrt[1 + Cot[e]^2] - c*Csc[e])]*Sqrt[(d*Sqr 
t[1 + Cot[e]^2] - d*Cos[f*x - ArcTan[Cot[e]]]*Sqrt[1 + Cot[e]^2])/(d*Sqrt[ 
1 + Cot[e]^2] + c*Csc[e])]*Sqrt[c + d*Cos[f*x - ArcTan[Cot[e]]]*Sqrt[1 + C 
ot[e]^2]*Sin[e]])) - ((2*d*Sin[e]*(c + d*Cos[f*x - ArcTan[Cot[e]]]*Sqrt[1 
+ Cot[e]^2]*Sin[e]))/(d^2*Cos[e]^2 + d^2*Sin[e]^2) - (Cot[e]*Sin[f*x - Arc 
Tan[Cot[e]]])/Sqrt[1 + Cot[e]^2])/Sqrt[c + d*Cos[f*x - ArcTan[Cot[e]]]*Sqr 
t[1 + Cot[e]^2]*Sin[e]]))/(3*f*(Cos[e/2 + (f*x)/2] + Sin[e/2 + (f*x)/2])^2 
) + (d*Sec[e]*(1 + Sin[e + f*x])*(-((AppellF1[-1/2, -1/2, -1/2, 1/2, -((Cs 
c[e]*(c + d*Cos[f*x - ArcTan[Cot[e]]]*Sqrt[1 + Cot[e]^2]*Sin[e]))/(d*Sqrt[ 
1 + Cot[e]^2]*(1 - (c*Csc[e])/(d*Sqrt[1 + Cot[e]^2])))), -((Csc[e]*(c + d* 
Cos[f*x - ArcTan[Cot[e]]]*Sqrt[1 + Cot[e]^2]*Sin[e]))/(d*Sqrt[1 + Cot[e]^2 
]*(-1 - (c*Csc[e])/(d*Sqrt[1 + Cot[e]^2]))))]*Cot[e]*Sin[f*x - ArcTan[Cot[ 
e]]])/(Sqrt[1 + Cot[e]^2]*Sqrt[(d*Sqrt[1 + Cot[e]^2] + d*Cos[f*x - ArcTan[ 
Cot[e]]]*Sqrt[1 + Cot[e]^2])/(d*Sqrt[1 + Cot[e]^2] - c*Csc[e])]*Sqrt[(d...
 

Rubi [A] (verified)

Time = 0.82 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.01, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 3232, 27, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a \sin (e+f x)+a) \sqrt {c+d \sin (e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a \sin (e+f x)+a) \sqrt {c+d \sin (e+f x)}dx\)

\(\Big \downarrow \) 3232

\(\displaystyle \frac {2}{3} \int \frac {a (3 c+d)+a (c+3 d) \sin (e+f x)}{2 \sqrt {c+d \sin (e+f x)}}dx-\frac {2 a \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {a (3 c+d)+a (c+3 d) \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}}dx-\frac {2 a \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {a (3 c+d)+a (c+3 d) \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}}dx-\frac {2 a \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {1}{3} \left (\frac {a (c+3 d) \int \sqrt {c+d \sin (e+f x)}dx}{d}-\frac {a \left (c^2-d^2\right ) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\right )-\frac {2 a \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\frac {a (c+3 d) \int \sqrt {c+d \sin (e+f x)}dx}{d}-\frac {a \left (c^2-d^2\right ) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\right )-\frac {2 a \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {1}{3} \left (\frac {a (c+3 d) \sqrt {c+d \sin (e+f x)} \int \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}dx}{d \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {a \left (c^2-d^2\right ) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\right )-\frac {2 a \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\frac {a (c+3 d) \sqrt {c+d \sin (e+f x)} \int \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}dx}{d \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {a \left (c^2-d^2\right ) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\right )-\frac {2 a \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {1}{3} \left (\frac {2 a (c+3 d) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {a \left (c^2-d^2\right ) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\right )-\frac {2 a \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {1}{3} \left (\frac {2 a (c+3 d) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {a \left (c^2-d^2\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \int \frac {1}{\sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}}dx}{d \sqrt {c+d \sin (e+f x)}}\right )-\frac {2 a \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\frac {2 a (c+3 d) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {a \left (c^2-d^2\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \int \frac {1}{\sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}}dx}{d \sqrt {c+d \sin (e+f x)}}\right )-\frac {2 a \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {1}{3} \left (\frac {2 a (c+3 d) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {2 a \left (c^2-d^2\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \operatorname {EllipticF}\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right ),\frac {2 d}{c+d}\right )}{d f \sqrt {c+d \sin (e+f x)}}\right )-\frac {2 a \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

Input:

Int[(a + a*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]],x]
 

Output:

(-2*a*Cos[e + f*x]*Sqrt[c + d*Sin[e + f*x]])/(3*f) + ((2*a*(c + 3*d)*Ellip 
ticE[(e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[c + d*Sin[e + f*x]])/(d*f*Sqr 
t[(c + d*Sin[e + f*x])/(c + d)]) - (2*a*(c^2 - d^2)*EllipticF[(e - Pi/2 + 
f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/(d*f*Sqrt[c + d 
*Sin[e + f*x]]))/3
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3232
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/( 
f*(m + 1))), x] + Simp[1/(m + 1)   Int[(a + b*Sin[e + f*x])^(m - 1)*Simp[b* 
d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ 
[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 
 0] && IntegerQ[2*m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(656\) vs. \(2(168)=336\).

Time = 1.97 (sec) , antiderivative size = 657, normalized size of antiderivative = 3.67

method result size
default \(\frac {2 a \left (4 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c^{2} d -4 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d^{3}-\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c^{3}-3 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c^{2} d +\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c \,d^{2}+3 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d^{3}+d^{3} \sin \left (f x +e \right )^{3}+c \,d^{2} \sin \left (f x +e \right )^{2}-d^{3} \sin \left (f x +e \right )-c \,d^{2}\right )}{3 d^{2} \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}\) \(657\)
parts \(\frac {2 a \left (c -d \right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \left (c \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )+\operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d -\operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c -\operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d \right )}{d \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}+\frac {2 a \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c^{2} d -\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d^{3}-\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c^{3}+\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c \,d^{2}+d^{3} \sin \left (f x +e \right )^{3}+c \,d^{2} \sin \left (f x +e \right )^{2}-d^{3} \sin \left (f x +e \right )-c \,d^{2}\right )}{3 d^{2} \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}\) \(701\)

Input:

int((a+sin(f*x+e)*a)*(c+d*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2/3*a*(4*((c+d*sin(f*x+e))/(c-d))^(1/2)*(-d*(-1+sin(f*x+e))/(c+d))^(1/2)*( 
-d*(1+sin(f*x+e))/(c-d))^(1/2)*EllipticF(((c+d*sin(f*x+e))/(c-d))^(1/2),(( 
c-d)/(c+d))^(1/2))*c^2*d-4*((c+d*sin(f*x+e))/(c-d))^(1/2)*(-d*(-1+sin(f*x+ 
e))/(c+d))^(1/2)*(-d*(1+sin(f*x+e))/(c-d))^(1/2)*EllipticF(((c+d*sin(f*x+e 
))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))*d^3-((c+d*sin(f*x+e))/(c-d))^(1/2)*(- 
d*(-1+sin(f*x+e))/(c+d))^(1/2)*(-d*(1+sin(f*x+e))/(c-d))^(1/2)*EllipticE(( 
(c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))*c^3-3*((c+d*sin(f*x+e)) 
/(c-d))^(1/2)*(-d*(-1+sin(f*x+e))/(c+d))^(1/2)*(-d*(1+sin(f*x+e))/(c-d))^( 
1/2)*EllipticE(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))*c^2*d+( 
(c+d*sin(f*x+e))/(c-d))^(1/2)*(-d*(-1+sin(f*x+e))/(c+d))^(1/2)*(-d*(1+sin( 
f*x+e))/(c-d))^(1/2)*EllipticE(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d) 
)^(1/2))*c*d^2+3*((c+d*sin(f*x+e))/(c-d))^(1/2)*(-d*(-1+sin(f*x+e))/(c+d)) 
^(1/2)*(-d*(1+sin(f*x+e))/(c-d))^(1/2)*EllipticE(((c+d*sin(f*x+e))/(c-d))^ 
(1/2),((c-d)/(c+d))^(1/2))*d^3+d^3*sin(f*x+e)^3+c*d^2*sin(f*x+e)^2-d^3*sin 
(f*x+e)-c*d^2)/d^2/cos(f*x+e)/(c+d*sin(f*x+e))^(1/2)/f
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 431, normalized size of antiderivative = 2.41 \[ \int (a+a \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=-\frac {2 \, {\left (3 \, \sqrt {d \sin \left (f x + e\right ) + c} a d^{2} \cos \left (f x + e\right ) + {\left (2 \, a c^{2} - 3 \, a c d - 3 \, a d^{2}\right )} \sqrt {\frac {1}{2} i \, d} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) - 3 i \, d \sin \left (f x + e\right ) - 2 i \, c}{3 \, d}\right ) + {\left (2 \, a c^{2} - 3 \, a c d - 3 \, a d^{2}\right )} \sqrt {-\frac {1}{2} i \, d} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) + 3 i \, d \sin \left (f x + e\right ) + 2 i \, c}{3 \, d}\right ) + 3 \, {\left (i \, a c d + 3 i \, a d^{2}\right )} \sqrt {\frac {1}{2} i \, d} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) - 3 i \, d \sin \left (f x + e\right ) - 2 i \, c}{3 \, d}\right )\right ) + 3 \, {\left (-i \, a c d - 3 i \, a d^{2}\right )} \sqrt {-\frac {1}{2} i \, d} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) + 3 i \, d \sin \left (f x + e\right ) + 2 i \, c}{3 \, d}\right )\right )\right )}}{9 \, d^{2} f} \] Input:

integrate((a+a*sin(f*x+e))*(c+d*sin(f*x+e))^(1/2),x, algorithm="fricas")
 

Output:

-2/9*(3*sqrt(d*sin(f*x + e) + c)*a*d^2*cos(f*x + e) + (2*a*c^2 - 3*a*c*d - 
 3*a*d^2)*sqrt(1/2*I*d)*weierstrassPInverse(-4/3*(4*c^2 - 3*d^2)/d^2, -8/2 
7*(8*I*c^3 - 9*I*c*d^2)/d^3, 1/3*(3*d*cos(f*x + e) - 3*I*d*sin(f*x + e) - 
2*I*c)/d) + (2*a*c^2 - 3*a*c*d - 3*a*d^2)*sqrt(-1/2*I*d)*weierstrassPInver 
se(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(-8*I*c^3 + 9*I*c*d^2)/d^3, 1/3*(3*d*co 
s(f*x + e) + 3*I*d*sin(f*x + e) + 2*I*c)/d) + 3*(I*a*c*d + 3*I*a*d^2)*sqrt 
(1/2*I*d)*weierstrassZeta(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(8*I*c^3 - 9*I*c 
*d^2)/d^3, weierstrassPInverse(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(8*I*c^3 - 
9*I*c*d^2)/d^3, 1/3*(3*d*cos(f*x + e) - 3*I*d*sin(f*x + e) - 2*I*c)/d)) + 
3*(-I*a*c*d - 3*I*a*d^2)*sqrt(-1/2*I*d)*weierstrassZeta(-4/3*(4*c^2 - 3*d^ 
2)/d^2, -8/27*(-8*I*c^3 + 9*I*c*d^2)/d^3, weierstrassPInverse(-4/3*(4*c^2 
- 3*d^2)/d^2, -8/27*(-8*I*c^3 + 9*I*c*d^2)/d^3, 1/3*(3*d*cos(f*x + e) + 3* 
I*d*sin(f*x + e) + 2*I*c)/d)))/(d^2*f)
 

Sympy [F]

\[ \int (a+a \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=a \left (\int \sqrt {c + d \sin {\left (e + f x \right )}} \sin {\left (e + f x \right )}\, dx + \int \sqrt {c + d \sin {\left (e + f x \right )}}\, dx\right ) \] Input:

integrate((a+a*sin(f*x+e))*(c+d*sin(f*x+e))**(1/2),x)
 

Output:

a*(Integral(sqrt(c + d*sin(e + f*x))*sin(e + f*x), x) + Integral(sqrt(c + 
d*sin(e + f*x)), x))
 

Maxima [F]

\[ \int (a+a \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )} \sqrt {d \sin \left (f x + e\right ) + c} \,d x } \] Input:

integrate((a+a*sin(f*x+e))*(c+d*sin(f*x+e))^(1/2),x, algorithm="maxima")
 

Output:

integrate((a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c), x)
 

Giac [F]

\[ \int (a+a \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )} \sqrt {d \sin \left (f x + e\right ) + c} \,d x } \] Input:

integrate((a+a*sin(f*x+e))*(c+d*sin(f*x+e))^(1/2),x, algorithm="giac")
 

Output:

integrate((a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c), x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+a \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=\int \left (a+a\,\sin \left (e+f\,x\right )\right )\,\sqrt {c+d\,\sin \left (e+f\,x\right )} \,d x \] Input:

int((a + a*sin(e + f*x))*(c + d*sin(e + f*x))^(1/2),x)
 

Output:

int((a + a*sin(e + f*x))*(c + d*sin(e + f*x))^(1/2), x)
 

Reduce [F]

\[ \int (a+a \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=a \left (\int \sqrt {\sin \left (f x +e \right ) d +c}d x +\int \sqrt {\sin \left (f x +e \right ) d +c}\, \sin \left (f x +e \right )d x \right ) \] Input:

int((a+a*sin(f*x+e))*(c+d*sin(f*x+e))^(1/2),x)
 

Output:

a*(int(sqrt(sin(e + f*x)*d + c),x) + int(sqrt(sin(e + f*x)*d + c)*sin(e + 
f*x),x))