\(\int \frac {(a+a \sin (e+f x))^2}{\sqrt {c+d \sin (e+f x)}} \, dx\) [500]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 189 \[ \int \frac {(a+a \sin (e+f x))^2}{\sqrt {c+d \sin (e+f x)}} \, dx=-\frac {2 a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 d f}-\frac {4 a^2 (c-3 d) E\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {c+d \sin (e+f x)}}{3 d^2 f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}+\frac {4 a^2 (c-2 d) (c-d) \operatorname {EllipticF}\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right ),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{3 d^2 f \sqrt {c+d \sin (e+f x)}} \] Output:

-2/3*a^2*cos(f*x+e)*(c+d*sin(f*x+e))^(1/2)/d/f+4/3*a^2*(c-3*d)*EllipticE(c 
os(1/2*e+1/4*Pi+1/2*f*x),2^(1/2)*(d/(c+d))^(1/2))*(c+d*sin(f*x+e))^(1/2)/d 
^2/f/((c+d*sin(f*x+e))/(c+d))^(1/2)+4/3*a^2*(c-2*d)*(c-d)*InverseJacobiAM( 
1/2*e-1/4*Pi+1/2*f*x,2^(1/2)*(d/(c+d))^(1/2))*((c+d*sin(f*x+e))/(c+d))^(1/ 
2)/d^2/f/(c+d*sin(f*x+e))^(1/2)
 

Mathematica [A] (verified)

Time = 3.20 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.02 \[ \int \frac {(a+a \sin (e+f x))^2}{\sqrt {c+d \sin (e+f x)}} \, dx=-\frac {2 a^2 (1+\sin (e+f x))^2 \left (d \cos (e+f x) (c+d \sin (e+f x))-2 \left (c^2-2 c d-3 d^2\right ) E\left (\frac {1}{4} (-2 e+\pi -2 f x)|\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}+2 \left (c^2-3 c d+2 d^2\right ) \operatorname {EllipticF}\left (\frac {1}{4} (-2 e+\pi -2 f x),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}\right )}{3 d^2 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^4 \sqrt {c+d \sin (e+f x)}} \] Input:

Integrate[(a + a*Sin[e + f*x])^2/Sqrt[c + d*Sin[e + f*x]],x]
 

Output:

(-2*a^2*(1 + Sin[e + f*x])^2*(d*Cos[e + f*x]*(c + d*Sin[e + f*x]) - 2*(c^2 
 - 2*c*d - 3*d^2)*EllipticE[(-2*e + Pi - 2*f*x)/4, (2*d)/(c + d)]*Sqrt[(c 
+ d*Sin[e + f*x])/(c + d)] + 2*(c^2 - 3*c*d + 2*d^2)*EllipticF[(-2*e + Pi 
- 2*f*x)/4, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)]))/(3*d^2*f*( 
Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^4*Sqrt[c + d*Sin[e + f*x]])
 

Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.02, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.407, Rules used = {3042, 3242, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^2}{\sqrt {c+d \sin (e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^2}{\sqrt {c+d \sin (e+f x)}}dx\)

\(\Big \downarrow \) 3242

\(\displaystyle \frac {2 \int \frac {2 a^2 d-a^2 (c-3 d) \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}}dx}{3 d}-\frac {2 a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 d f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \int \frac {2 a^2 d-a^2 (c-3 d) \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}}dx}{3 d}-\frac {2 a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 d f}\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {2 \left (\frac {a^2 (c-2 d) (c-d) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}-\frac {a^2 (c-3 d) \int \sqrt {c+d \sin (e+f x)}dx}{d}\right )}{3 d}-\frac {2 a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 d f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \left (\frac {a^2 (c-2 d) (c-d) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}-\frac {a^2 (c-3 d) \int \sqrt {c+d \sin (e+f x)}dx}{d}\right )}{3 d}-\frac {2 a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 d f}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {2 \left (\frac {a^2 (c-2 d) (c-d) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}-\frac {a^2 (c-3 d) \sqrt {c+d \sin (e+f x)} \int \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}dx}{d \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}\right )}{3 d}-\frac {2 a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 d f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \left (\frac {a^2 (c-2 d) (c-d) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}-\frac {a^2 (c-3 d) \sqrt {c+d \sin (e+f x)} \int \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}dx}{d \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}\right )}{3 d}-\frac {2 a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 d f}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {2 \left (\frac {a^2 (c-2 d) (c-d) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}-\frac {2 a^2 (c-3 d) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}\right )}{3 d}-\frac {2 a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 d f}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {2 \left (\frac {a^2 (c-2 d) (c-d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \int \frac {1}{\sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}}dx}{d \sqrt {c+d \sin (e+f x)}}-\frac {2 a^2 (c-3 d) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}\right )}{3 d}-\frac {2 a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 d f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \left (\frac {a^2 (c-2 d) (c-d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \int \frac {1}{\sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}}dx}{d \sqrt {c+d \sin (e+f x)}}-\frac {2 a^2 (c-3 d) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}\right )}{3 d}-\frac {2 a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 d f}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {2 \left (\frac {2 a^2 (c-2 d) (c-d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \operatorname {EllipticF}\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right ),\frac {2 d}{c+d}\right )}{d f \sqrt {c+d \sin (e+f x)}}-\frac {2 a^2 (c-3 d) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}\right )}{3 d}-\frac {2 a^2 \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 d f}\)

Input:

Int[(a + a*Sin[e + f*x])^2/Sqrt[c + d*Sin[e + f*x]],x]
 

Output:

(-2*a^2*Cos[e + f*x]*Sqrt[c + d*Sin[e + f*x]])/(3*d*f) + (2*((-2*a^2*(c - 
3*d)*EllipticE[(e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[c + d*Sin[e + f*x]] 
)/(d*f*Sqrt[(c + d*Sin[e + f*x])/(c + d)]) + (2*a^2*(c - 2*d)*(c - d)*Elli 
pticF[(e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d) 
])/(d*f*Sqrt[c + d*Sin[e + f*x]])))/(3*d)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3242
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x 
])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Simp[1/(d*(m 
+ n))   Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c* 
(m - 2) + b^2*d*(n + 1) + a^2*d*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 
 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c 
 - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[ 
n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[ 
c, 0]))
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(718\) vs. \(2(178)=356\).

Time = 1.64 (sec) , antiderivative size = 719, normalized size of antiderivative = 3.80

method result size
parts \(\frac {2 a^{2} \left (c -d \right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )}{d \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}+\frac {a^{2} \sqrt {-\left (-c -d \sin \left (f x +e \right )\right ) \cos \left (f x +e \right )^{2}}\, \left (-\frac {2 \sqrt {-\left (-c -d \sin \left (f x +e \right )\right ) \cos \left (f x +e \right )^{2}}}{3 d}+\frac {2 \left (\frac {c}{d}-1\right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {\frac {d \left (1-\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )}{3 \sqrt {-\left (-c -d \sin \left (f x +e \right )\right ) \cos \left (f x +e \right )^{2}}}-\frac {4 c \left (\frac {c}{d}-1\right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {\frac {d \left (1-\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \left (\left (-\frac {c}{d}-1\right ) \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )+\operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )\right )}{3 d \sqrt {-\left (-c -d \sin \left (f x +e \right )\right ) \cos \left (f x +e \right )^{2}}}\right )}{\cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}-\frac {4 a^{2} \left (c -d \right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \left (\operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c +\operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d -\operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d \right )}{d^{2} \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}\) \(719\)
default \(-\frac {2 a^{2} \left (2 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c^{2} d -12 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d^{2} c +10 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d^{3}-2 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c^{3}+6 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c^{2} d +2 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c \,d^{2}-6 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {d \left (-1+\sin \left (f x +e \right )\right )}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d^{3}-d^{3} \sin \left (f x +e \right )^{3}-c \,d^{2} \sin \left (f x +e \right )^{2}+d^{3} \sin \left (f x +e \right )+c \,d^{2}\right )}{3 d^{3} \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}\) \(758\)

Input:

int((a+sin(f*x+e)*a)^2/(c+d*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2*a^2*(c-d)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(-d*(-1+sin(f*x+e))/(c+d))^(1/2 
)*(-d*(1+sin(f*x+e))/(c-d))^(1/2)*EllipticF(((c+d*sin(f*x+e))/(c-d))^(1/2) 
,((c-d)/(c+d))^(1/2))/d/cos(f*x+e)/(c+d*sin(f*x+e))^(1/2)/f+a^2*(-(-c-d*si 
n(f*x+e))*cos(f*x+e)^2)^(1/2)*(-2/3/d*(-(-c-d*sin(f*x+e))*cos(f*x+e)^2)^(1 
/2)+2/3*(c/d-1)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(d*(1-sin(f*x+e))/(c+d))^(1 
/2)*(-d*(1+sin(f*x+e))/(c-d))^(1/2)/(-(-c-d*sin(f*x+e))*cos(f*x+e)^2)^(1/2 
)*EllipticF(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))-4/3*c/d*(c 
/d-1)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(d*(1-sin(f*x+e))/(c+d))^(1/2)*(-d*(1 
+sin(f*x+e))/(c-d))^(1/2)/(-(-c-d*sin(f*x+e))*cos(f*x+e)^2)^(1/2)*((-c/d-1 
)*EllipticE(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))+EllipticF( 
((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))))/cos(f*x+e)/(c+d*sin( 
f*x+e))^(1/2)/f-4*a^2*(c-d)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(-d*(-1+sin(f*x 
+e))/(c+d))^(1/2)*(-d*(1+sin(f*x+e))/(c-d))^(1/2)*(EllipticE(((c+d*sin(f*x 
+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))*c+EllipticE(((c+d*sin(f*x+e))/(c-d) 
)^(1/2),((c-d)/(c+d))^(1/2))*d-EllipticF(((c+d*sin(f*x+e))/(c-d))^(1/2),(( 
c-d)/(c+d))^(1/2))*d)/d^2/cos(f*x+e)/(c+d*sin(f*x+e))^(1/2)/f
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 453, normalized size of antiderivative = 2.40 \[ \int \frac {(a+a \sin (e+f x))^2}{\sqrt {c+d \sin (e+f x)}} \, dx=-\frac {2 \, {\left (3 \, \sqrt {d \sin \left (f x + e\right ) + c} a^{2} d^{2} \cos \left (f x + e\right ) - 4 \, {\left (a^{2} c^{2} - 3 \, a^{2} c d + 3 \, a^{2} d^{2}\right )} \sqrt {\frac {1}{2} i \, d} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) - 3 i \, d \sin \left (f x + e\right ) - 2 i \, c}{3 \, d}\right ) - 4 \, {\left (a^{2} c^{2} - 3 \, a^{2} c d + 3 \, a^{2} d^{2}\right )} \sqrt {-\frac {1}{2} i \, d} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) + 3 i \, d \sin \left (f x + e\right ) + 2 i \, c}{3 \, d}\right ) + 6 \, {\left (-i \, a^{2} c d + 3 i \, a^{2} d^{2}\right )} \sqrt {\frac {1}{2} i \, d} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) - 3 i \, d \sin \left (f x + e\right ) - 2 i \, c}{3 \, d}\right )\right ) + 6 \, {\left (i \, a^{2} c d - 3 i \, a^{2} d^{2}\right )} \sqrt {-\frac {1}{2} i \, d} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) + 3 i \, d \sin \left (f x + e\right ) + 2 i \, c}{3 \, d}\right )\right )\right )}}{9 \, d^{3} f} \] Input:

integrate((a+a*sin(f*x+e))^2/(c+d*sin(f*x+e))^(1/2),x, algorithm="fricas")
 

Output:

-2/9*(3*sqrt(d*sin(f*x + e) + c)*a^2*d^2*cos(f*x + e) - 4*(a^2*c^2 - 3*a^2 
*c*d + 3*a^2*d^2)*sqrt(1/2*I*d)*weierstrassPInverse(-4/3*(4*c^2 - 3*d^2)/d 
^2, -8/27*(8*I*c^3 - 9*I*c*d^2)/d^3, 1/3*(3*d*cos(f*x + e) - 3*I*d*sin(f*x 
 + e) - 2*I*c)/d) - 4*(a^2*c^2 - 3*a^2*c*d + 3*a^2*d^2)*sqrt(-1/2*I*d)*wei 
erstrassPInverse(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(-8*I*c^3 + 9*I*c*d^2)/d^ 
3, 1/3*(3*d*cos(f*x + e) + 3*I*d*sin(f*x + e) + 2*I*c)/d) + 6*(-I*a^2*c*d 
+ 3*I*a^2*d^2)*sqrt(1/2*I*d)*weierstrassZeta(-4/3*(4*c^2 - 3*d^2)/d^2, -8/ 
27*(8*I*c^3 - 9*I*c*d^2)/d^3, weierstrassPInverse(-4/3*(4*c^2 - 3*d^2)/d^2 
, -8/27*(8*I*c^3 - 9*I*c*d^2)/d^3, 1/3*(3*d*cos(f*x + e) - 3*I*d*sin(f*x + 
 e) - 2*I*c)/d)) + 6*(I*a^2*c*d - 3*I*a^2*d^2)*sqrt(-1/2*I*d)*weierstrassZ 
eta(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(-8*I*c^3 + 9*I*c*d^2)/d^3, weierstras 
sPInverse(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(-8*I*c^3 + 9*I*c*d^2)/d^3, 1/3* 
(3*d*cos(f*x + e) + 3*I*d*sin(f*x + e) + 2*I*c)/d)))/(d^3*f)
 

Sympy [F]

\[ \int \frac {(a+a \sin (e+f x))^2}{\sqrt {c+d \sin (e+f x)}} \, dx=a^{2} \left (\int \frac {2 \sin {\left (e + f x \right )}}{\sqrt {c + d \sin {\left (e + f x \right )}}}\, dx + \int \frac {\sin ^{2}{\left (e + f x \right )}}{\sqrt {c + d \sin {\left (e + f x \right )}}}\, dx + \int \frac {1}{\sqrt {c + d \sin {\left (e + f x \right )}}}\, dx\right ) \] Input:

integrate((a+a*sin(f*x+e))**2/(c+d*sin(f*x+e))**(1/2),x)
 

Output:

a**2*(Integral(2*sin(e + f*x)/sqrt(c + d*sin(e + f*x)), x) + Integral(sin( 
e + f*x)**2/sqrt(c + d*sin(e + f*x)), x) + Integral(1/sqrt(c + d*sin(e + f 
*x)), x))
 

Maxima [F]

\[ \int \frac {(a+a \sin (e+f x))^2}{\sqrt {c+d \sin (e+f x)}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{2}}{\sqrt {d \sin \left (f x + e\right ) + c}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))^2/(c+d*sin(f*x+e))^(1/2),x, algorithm="maxima")
 

Output:

integrate((a*sin(f*x + e) + a)^2/sqrt(d*sin(f*x + e) + c), x)
 

Giac [F]

\[ \int \frac {(a+a \sin (e+f x))^2}{\sqrt {c+d \sin (e+f x)}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{2}}{\sqrt {d \sin \left (f x + e\right ) + c}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))^2/(c+d*sin(f*x+e))^(1/2),x, algorithm="giac")
 

Output:

integrate((a*sin(f*x + e) + a)^2/sqrt(d*sin(f*x + e) + c), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^2}{\sqrt {c+d \sin (e+f x)}} \, dx=\int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^2}{\sqrt {c+d\,\sin \left (e+f\,x\right )}} \,d x \] Input:

int((a + a*sin(e + f*x))^2/(c + d*sin(e + f*x))^(1/2),x)
                                                                                    
                                                                                    
 

Output:

int((a + a*sin(e + f*x))^2/(c + d*sin(e + f*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {(a+a \sin (e+f x))^2}{\sqrt {c+d \sin (e+f x)}} \, dx=a^{2} \left (\int \frac {\sqrt {\sin \left (f x +e \right ) d +c}}{\sin \left (f x +e \right ) d +c}d x +\int \frac {\sqrt {\sin \left (f x +e \right ) d +c}\, \sin \left (f x +e \right )^{2}}{\sin \left (f x +e \right ) d +c}d x +2 \left (\int \frac {\sqrt {\sin \left (f x +e \right ) d +c}\, \sin \left (f x +e \right )}{\sin \left (f x +e \right ) d +c}d x \right )\right ) \] Input:

int((a+a*sin(f*x+e))^2/(c+d*sin(f*x+e))^(1/2),x)
 

Output:

a**2*(int(sqrt(sin(e + f*x)*d + c)/(sin(e + f*x)*d + c),x) + int((sqrt(sin 
(e + f*x)*d + c)*sin(e + f*x)**2)/(sin(e + f*x)*d + c),x) + 2*int((sqrt(si 
n(e + f*x)*d + c)*sin(e + f*x))/(sin(e + f*x)*d + c),x))