\(\int (-3+4 \sin (e+f x))^{-1-m} (a+a \sin (e+f x))^m \, dx\) [650]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 77 \[ \int (-3+4 \sin (e+f x))^{-1-m} (a+a \sin (e+f x))^m \, dx=-\frac {2^{1+m} \cos (e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},1+m,\frac {3}{2},\frac {7 (a-a \sin (e+f x))}{a+a \sin (e+f x)}\right ) (1+\sin (e+f x))^{-1-m} (a+a \sin (e+f x))^m}{f} \] Output:

-2^(1+m)*cos(f*x+e)*hypergeom([1/2, 1+m],[3/2],7*(a-a*sin(f*x+e))/(a+a*sin 
(f*x+e)))*(1+sin(f*x+e))^(-1-m)*(a+a*sin(f*x+e))^m/f
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 10.35 (sec) , antiderivative size = 271, normalized size of antiderivative = 3.52 \[ \int (-3+4 \sin (e+f x))^{-1-m} (a+a \sin (e+f x))^m \, dx=\frac {\operatorname {Hypergeometric2F1}\left (1+m,1+2 m,2 (1+m),-\frac {8 \sqrt {7} (\cos (e+f x)+i (1+\sin (e+f x)))}{\left (-7 i+\sqrt {7}\right ) \left (3 i+\sqrt {7}-4 \cos (e+f x)-4 i \sin (e+f x)\right )}\right ) (\cos (e+f x)-i \sin (e+f x)) \left (-3 i+\sqrt {7}+4 \cos (e+f x)+4 i \sin (e+f x)\right ) \left (\frac {\left (7 i+\sqrt {7}\right ) \left (-3 i+\sqrt {7}+4 \cos (e+f x)+4 i \sin (e+f x)\right )}{\left (-7 i+\sqrt {7}\right ) \left (3 i+\sqrt {7}-4 \cos (e+f x)-4 i \sin (e+f x)\right )}\right )^m (a (1+\sin (e+f x)))^m (1-i \cos (e+f x)+\sin (e+f x)) (-3+4 \sin (e+f x))^{-1-m}}{\left (-7 i+\sqrt {7}\right ) f (1+2 m)} \] Input:

Integrate[(-3 + 4*Sin[e + f*x])^(-1 - m)*(a + a*Sin[e + f*x])^m,x]
 

Output:

(Hypergeometric2F1[1 + m, 1 + 2*m, 2*(1 + m), (-8*Sqrt[7]*(Cos[e + f*x] + 
I*(1 + Sin[e + f*x])))/((-7*I + Sqrt[7])*(3*I + Sqrt[7] - 4*Cos[e + f*x] - 
 (4*I)*Sin[e + f*x]))]*(Cos[e + f*x] - I*Sin[e + f*x])*(-3*I + Sqrt[7] + 4 
*Cos[e + f*x] + (4*I)*Sin[e + f*x])*(((7*I + Sqrt[7])*(-3*I + Sqrt[7] + 4* 
Cos[e + f*x] + (4*I)*Sin[e + f*x]))/((-7*I + Sqrt[7])*(3*I + Sqrt[7] - 4*C 
os[e + f*x] - (4*I)*Sin[e + f*x])))^m*(a*(1 + Sin[e + f*x]))^m*(1 - I*Cos[ 
e + f*x] + Sin[e + f*x])*(-3 + 4*Sin[e + f*x])^(-1 - m))/((-7*I + Sqrt[7]) 
*f*(1 + 2*m))
 

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.53, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {3042, 3267, 142}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (4 \sin (e+f x)-3)^{-m-1} (a \sin (e+f x)+a)^m \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (4 \sin (e+f x)-3)^{-m-1} (a \sin (e+f x)+a)^mdx\)

\(\Big \downarrow \) 3267

\(\displaystyle \frac {a^2 \cos (e+f x) \int \frac {(4 \sin (e+f x)-3)^{-m-1} (\sin (e+f x) a+a)^{m-\frac {1}{2}}}{\sqrt {a-a \sin (e+f x)}}d\sin (e+f x)}{f \sqrt {a-a \sin (e+f x)} \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 142

\(\displaystyle -\frac {a \sqrt {\frac {1-\sin (e+f x)}{\sin (e+f x)+1}} \cos (e+f x) (4 \sin (e+f x)-3)^{-m} (a \sin (e+f x)+a)^m \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-m,1-m,-\frac {2 (3-4 \sin (e+f x))}{\sin (e+f x)+1}\right )}{\sqrt {7} f m (a-a \sin (e+f x))}\)

Input:

Int[(-3 + 4*Sin[e + f*x])^(-1 - m)*(a + a*Sin[e + f*x])^m,x]
 

Output:

-((a*Cos[e + f*x]*Hypergeometric2F1[1/2, -m, 1 - m, (-2*(3 - 4*Sin[e + f*x 
]))/(1 + Sin[e + f*x])]*Sqrt[(1 - Sin[e + f*x])/(1 + Sin[e + f*x])]*(a + a 
*Sin[e + f*x])^m)/(Sqrt[7]*f*m*(-3 + 4*Sin[e + f*x])^m*(a - a*Sin[e + f*x] 
)))
 

Defintions of rubi rules used

rule 142
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((b*e 
 - a*f)*(m + 1)))*Hypergeometric2F1[m + 1, -n, m + 2, (-(d*e - c*f))*((a + 
b*x)/((b*c - a*d)*(e + f*x)))])/((b*e - a*f)*((c + d*x)/((b*c - a*d)*(e + f 
*x))))^n, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[m + n + p + 2, 
 0] &&  !IntegerQ[n]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3267
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a^2*(Cos[e + f*x]/(f*Sqrt[a + b*Sin[e 
+ f*x]]*Sqrt[a - b*Sin[e + f*x]]))   Subst[Int[(a + b*x)^(m - 1/2)*((c + d* 
x)^n/Sqrt[a - b*x]), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m 
, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && 
 !IntegerQ[m]
 
Maple [F]

\[\int \left (-3+4 \sin \left (f x +e \right )\right )^{-1-m} \left (a +a \sin \left (f x +e \right )\right )^{m}d x\]

Input:

int((-3+4*sin(f*x+e))^(-1-m)*(a+a*sin(f*x+e))^m,x)
 

Output:

int((-3+4*sin(f*x+e))^(-1-m)*(a+a*sin(f*x+e))^m,x)
 

Fricas [F]

\[ \int (-3+4 \sin (e+f x))^{-1-m} (a+a \sin (e+f x))^m \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{m} {\left (4 \, \sin \left (f x + e\right ) - 3\right )}^{-m - 1} \,d x } \] Input:

integrate((-3+4*sin(f*x+e))^(-1-m)*(a+a*sin(f*x+e))^m,x, algorithm="fricas 
")
 

Output:

integral((a*sin(f*x + e) + a)^m*(4*sin(f*x + e) - 3)^(-m - 1), x)
 

Sympy [F]

\[ \int (-3+4 \sin (e+f x))^{-1-m} (a+a \sin (e+f x))^m \, dx=\int \left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{m} \left (4 \sin {\left (e + f x \right )} - 3\right )^{- m - 1}\, dx \] Input:

integrate((-3+4*sin(f*x+e))**(-1-m)*(a+a*sin(f*x+e))**m,x)
 

Output:

Integral((a*(sin(e + f*x) + 1))**m*(4*sin(e + f*x) - 3)**(-m - 1), x)
 

Maxima [F]

\[ \int (-3+4 \sin (e+f x))^{-1-m} (a+a \sin (e+f x))^m \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{m} {\left (4 \, \sin \left (f x + e\right ) - 3\right )}^{-m - 1} \,d x } \] Input:

integrate((-3+4*sin(f*x+e))^(-1-m)*(a+a*sin(f*x+e))^m,x, algorithm="maxima 
")
 

Output:

integrate((a*sin(f*x + e) + a)^m*(4*sin(f*x + e) - 3)^(-m - 1), x)
 

Giac [F]

\[ \int (-3+4 \sin (e+f x))^{-1-m} (a+a \sin (e+f x))^m \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{m} {\left (4 \, \sin \left (f x + e\right ) - 3\right )}^{-m - 1} \,d x } \] Input:

integrate((-3+4*sin(f*x+e))^(-1-m)*(a+a*sin(f*x+e))^m,x, algorithm="giac")
 

Output:

integrate((a*sin(f*x + e) + a)^m*(4*sin(f*x + e) - 3)^(-m - 1), x)
 

Mupad [F(-1)]

Timed out. \[ \int (-3+4 \sin (e+f x))^{-1-m} (a+a \sin (e+f x))^m \, dx=\int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^m}{{\left (4\,\sin \left (e+f\,x\right )-3\right )}^{m+1}} \,d x \] Input:

int((a + a*sin(e + f*x))^m/(4*sin(e + f*x) - 3)^(m + 1),x)
 

Output:

int((a + a*sin(e + f*x))^m/(4*sin(e + f*x) - 3)^(m + 1), x)
 

Reduce [F]

\[ \int (-3+4 \sin (e+f x))^{-1-m} (a+a \sin (e+f x))^m \, dx=\int \frac {\left (a +a \sin \left (f x +e \right )\right )^{m}}{4 \left (4 \sin \left (f x +e \right )-3\right )^{m} \sin \left (f x +e \right )-3 \left (4 \sin \left (f x +e \right )-3\right )^{m}}d x \] Input:

int((-3+4*sin(f*x+e))^(-1-m)*(a+a*sin(f*x+e))^m,x)
 

Output:

int((sin(e + f*x)*a + a)**m/(4*(4*sin(e + f*x) - 3)**m*sin(e + f*x) - 3*(4 
*sin(e + f*x) - 3)**m),x)