\(\int \frac {c+d \sin (e+f x)}{(a+b \sin (e+f x))^3} \, dx\) [725]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 162 \[ \int \frac {c+d \sin (e+f x)}{(a+b \sin (e+f x))^3} \, dx=\frac {\left (2 a^2 c+b^2 c-3 a b d\right ) \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2} f}+\frac {(b c-a d) \cos (e+f x)}{2 \left (a^2-b^2\right ) f (a+b \sin (e+f x))^2}+\frac {\left (3 a b c-a^2 d-2 b^2 d\right ) \cos (e+f x)}{2 \left (a^2-b^2\right )^2 f (a+b \sin (e+f x))} \] Output:

(2*a^2*c-3*a*b*d+b^2*c)*arctan((b+a*tan(1/2*f*x+1/2*e))/(a^2-b^2)^(1/2))/( 
a^2-b^2)^(5/2)/f+1/2*(-a*d+b*c)*cos(f*x+e)/(a^2-b^2)/f/(a+b*sin(f*x+e))^2+ 
1/2*(-a^2*d+3*a*b*c-2*b^2*d)*cos(f*x+e)/(a^2-b^2)^2/f/(a+b*sin(f*x+e))
 

Mathematica [A] (verified)

Time = 0.69 (sec) , antiderivative size = 157, normalized size of antiderivative = 0.97 \[ \int \frac {c+d \sin (e+f x)}{(a+b \sin (e+f x))^3} \, dx=\frac {\frac {2 \left (2 a^2 c+b^2 c-3 a b d\right ) \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2}}+\frac {(b c-a d) \cos (e+f x)}{(a-b) (a+b) (a+b \sin (e+f x))^2}-\frac {\left (-3 a b c+a^2 d+2 b^2 d\right ) \cos (e+f x)}{(a-b)^2 (a+b)^2 (a+b \sin (e+f x))}}{2 f} \] Input:

Integrate[(c + d*Sin[e + f*x])/(a + b*Sin[e + f*x])^3,x]
 

Output:

((2*(2*a^2*c + b^2*c - 3*a*b*d)*ArcTan[(b + a*Tan[(e + f*x)/2])/Sqrt[a^2 - 
 b^2]])/(a^2 - b^2)^(5/2) + ((b*c - a*d)*Cos[e + f*x])/((a - b)*(a + b)*(a 
 + b*Sin[e + f*x])^2) - ((-3*a*b*c + a^2*d + 2*b^2*d)*Cos[e + f*x])/((a - 
b)^2*(a + b)^2*(a + b*Sin[e + f*x])))/(2*f)
 

Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.12, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 3233, 25, 3042, 3233, 25, 27, 3042, 3139, 1083, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d \sin (e+f x)}{(a+b \sin (e+f x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {c+d \sin (e+f x)}{(a+b \sin (e+f x))^3}dx\)

\(\Big \downarrow \) 3233

\(\displaystyle \frac {(b c-a d) \cos (e+f x)}{2 f \left (a^2-b^2\right ) (a+b \sin (e+f x))^2}-\frac {\int -\frac {2 (a c-b d)-(b c-a d) \sin (e+f x)}{(a+b \sin (e+f x))^2}dx}{2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {2 (a c-b d)-(b c-a d) \sin (e+f x)}{(a+b \sin (e+f x))^2}dx}{2 \left (a^2-b^2\right )}+\frac {(b c-a d) \cos (e+f x)}{2 f \left (a^2-b^2\right ) (a+b \sin (e+f x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {2 (a c-b d)-(b c-a d) \sin (e+f x)}{(a+b \sin (e+f x))^2}dx}{2 \left (a^2-b^2\right )}+\frac {(b c-a d) \cos (e+f x)}{2 f \left (a^2-b^2\right ) (a+b \sin (e+f x))^2}\)

\(\Big \downarrow \) 3233

\(\displaystyle \frac {\frac {\left (a^2 (-d)+3 a b c-2 b^2 d\right ) \cos (e+f x)}{f \left (a^2-b^2\right ) (a+b \sin (e+f x))}-\frac {\int -\frac {2 c a^2-3 b d a+b^2 c}{a+b \sin (e+f x)}dx}{a^2-b^2}}{2 \left (a^2-b^2\right )}+\frac {(b c-a d) \cos (e+f x)}{2 f \left (a^2-b^2\right ) (a+b \sin (e+f x))^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {2 c a^2-3 b d a+b^2 c}{a+b \sin (e+f x)}dx}{a^2-b^2}+\frac {\left (a^2 (-d)+3 a b c-2 b^2 d\right ) \cos (e+f x)}{f \left (a^2-b^2\right ) (a+b \sin (e+f x))}}{2 \left (a^2-b^2\right )}+\frac {(b c-a d) \cos (e+f x)}{2 f \left (a^2-b^2\right ) (a+b \sin (e+f x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\left (2 a^2 c-3 a b d+b^2 c\right ) \int \frac {1}{a+b \sin (e+f x)}dx}{a^2-b^2}+\frac {\left (a^2 (-d)+3 a b c-2 b^2 d\right ) \cos (e+f x)}{f \left (a^2-b^2\right ) (a+b \sin (e+f x))}}{2 \left (a^2-b^2\right )}+\frac {(b c-a d) \cos (e+f x)}{2 f \left (a^2-b^2\right ) (a+b \sin (e+f x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (2 a^2 c-3 a b d+b^2 c\right ) \int \frac {1}{a+b \sin (e+f x)}dx}{a^2-b^2}+\frac {\left (a^2 (-d)+3 a b c-2 b^2 d\right ) \cos (e+f x)}{f \left (a^2-b^2\right ) (a+b \sin (e+f x))}}{2 \left (a^2-b^2\right )}+\frac {(b c-a d) \cos (e+f x)}{2 f \left (a^2-b^2\right ) (a+b \sin (e+f x))^2}\)

\(\Big \downarrow \) 3139

\(\displaystyle \frac {\frac {2 \left (2 a^2 c-3 a b d+b^2 c\right ) \int \frac {1}{a \tan ^2\left (\frac {1}{2} (e+f x)\right )+2 b \tan \left (\frac {1}{2} (e+f x)\right )+a}d\tan \left (\frac {1}{2} (e+f x)\right )}{f \left (a^2-b^2\right )}+\frac {\left (a^2 (-d)+3 a b c-2 b^2 d\right ) \cos (e+f x)}{f \left (a^2-b^2\right ) (a+b \sin (e+f x))}}{2 \left (a^2-b^2\right )}+\frac {(b c-a d) \cos (e+f x)}{2 f \left (a^2-b^2\right ) (a+b \sin (e+f x))^2}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {\frac {\left (a^2 (-d)+3 a b c-2 b^2 d\right ) \cos (e+f x)}{f \left (a^2-b^2\right ) (a+b \sin (e+f x))}-\frac {4 \left (2 a^2 c-3 a b d+b^2 c\right ) \int \frac {1}{-\left (2 b+2 a \tan \left (\frac {1}{2} (e+f x)\right )\right )^2-4 \left (a^2-b^2\right )}d\left (2 b+2 a \tan \left (\frac {1}{2} (e+f x)\right )\right )}{f \left (a^2-b^2\right )}}{2 \left (a^2-b^2\right )}+\frac {(b c-a d) \cos (e+f x)}{2 f \left (a^2-b^2\right ) (a+b \sin (e+f x))^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {2 \left (2 a^2 c-3 a b d+b^2 c\right ) \arctan \left (\frac {2 a \tan \left (\frac {1}{2} (e+f x)\right )+2 b}{2 \sqrt {a^2-b^2}}\right )}{f \left (a^2-b^2\right )^{3/2}}+\frac {\left (a^2 (-d)+3 a b c-2 b^2 d\right ) \cos (e+f x)}{f \left (a^2-b^2\right ) (a+b \sin (e+f x))}}{2 \left (a^2-b^2\right )}+\frac {(b c-a d) \cos (e+f x)}{2 f \left (a^2-b^2\right ) (a+b \sin (e+f x))^2}\)

Input:

Int[(c + d*Sin[e + f*x])/(a + b*Sin[e + f*x])^3,x]
 

Output:

((b*c - a*d)*Cos[e + f*x])/(2*(a^2 - b^2)*f*(a + b*Sin[e + f*x])^2) + ((2* 
(2*a^2*c + b^2*c - 3*a*b*d)*ArcTan[(2*b + 2*a*Tan[(e + f*x)/2])/(2*Sqrt[a^ 
2 - b^2])])/((a^2 - b^2)^(3/2)*f) + ((3*a*b*c - a^2*d - 2*b^2*d)*Cos[e + f 
*x])/((a^2 - b^2)*f*(a + b*Sin[e + f*x])))/(2*(a^2 - b^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3139
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = Fre 
eFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + 2*b*e*x + a 
*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] && NeQ 
[a^2 - b^2, 0]
 

rule 3233
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-(b*c - a*d))*Cos[e + f*x]*((a + b*Sin[e + 
 f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(a^2 - b^2)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*( 
m + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c 
- a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(348\) vs. \(2(153)=306\).

Time = 1.43 (sec) , antiderivative size = 349, normalized size of antiderivative = 2.15

method result size
derivativedivides \(\frac {\frac {-\frac {b \left (3 a^{3} d -5 a^{2} b c +2 b^{3} c \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}}{a \left (a^{4}-2 a^{2} b^{2}+b^{4}\right )}-\frac {\left (2 a^{5} d -4 a^{4} b c +5 a^{3} b^{2} d -7 a^{2} b^{3} c +2 a \,b^{4} d +2 b^{5} c \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}}{\left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) a^{2}}-\frac {b \left (5 a^{3} d -11 a^{2} b c +4 a \,b^{2} d +2 b^{3} c \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{a \left (a^{4}-2 a^{2} b^{2}+b^{4}\right )}-\frac {2 a^{3} d -4 a^{2} b c +a \,b^{2} d +b^{3} c}{a^{4}-2 a^{2} b^{2}+b^{4}}}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} a +2 b \tan \left (\frac {f x}{2}+\frac {e}{2}\right )+a \right )^{2}}+\frac {\left (2 a^{2} c -3 a b d +b^{2} c \right ) \arctan \left (\frac {2 a \tan \left (\frac {f x}{2}+\frac {e}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{\left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \sqrt {a^{2}-b^{2}}}}{f}\) \(349\)
default \(\frac {\frac {-\frac {b \left (3 a^{3} d -5 a^{2} b c +2 b^{3} c \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}}{a \left (a^{4}-2 a^{2} b^{2}+b^{4}\right )}-\frac {\left (2 a^{5} d -4 a^{4} b c +5 a^{3} b^{2} d -7 a^{2} b^{3} c +2 a \,b^{4} d +2 b^{5} c \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}}{\left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) a^{2}}-\frac {b \left (5 a^{3} d -11 a^{2} b c +4 a \,b^{2} d +2 b^{3} c \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{a \left (a^{4}-2 a^{2} b^{2}+b^{4}\right )}-\frac {2 a^{3} d -4 a^{2} b c +a \,b^{2} d +b^{3} c}{a^{4}-2 a^{2} b^{2}+b^{4}}}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} a +2 b \tan \left (\frac {f x}{2}+\frac {e}{2}\right )+a \right )^{2}}+\frac {\left (2 a^{2} c -3 a b d +b^{2} c \right ) \arctan \left (\frac {2 a \tan \left (\frac {f x}{2}+\frac {e}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{\left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \sqrt {a^{2}-b^{2}}}}{f}\) \(349\)
risch \(\frac {i \left (2 i b^{2} a^{2} c \,{\mathrm e}^{3 i \left (f x +e \right )}-3 i b^{3} a d \,{\mathrm e}^{3 i \left (f x +e \right )}+i b^{4} c \,{\mathrm e}^{3 i \left (f x +e \right )}+4 i a^{3} b d \,{\mathrm e}^{i \left (f x +e \right )}-10 i a^{2} b^{2} c \,{\mathrm e}^{i \left (f x +e \right )}+5 i a \,b^{3} d \,{\mathrm e}^{i \left (f x +e \right )}+i b^{4} c \,{\mathrm e}^{i \left (f x +e \right )}+2 a^{4} d \,{\mathrm e}^{2 i \left (f x +e \right )}-6 b \,a^{3} c \,{\mathrm e}^{2 i \left (f x +e \right )}+5 b^{2} a^{2} d \,{\mathrm e}^{2 i \left (f x +e \right )}-3 b^{3} a c \,{\mathrm e}^{2 i \left (f x +e \right )}+2 b^{4} d \,{\mathrm e}^{2 i \left (f x +e \right )}-a^{2} b^{2} d +3 a \,b^{3} c -2 b^{4} d \right )}{\left (-i b \,{\mathrm e}^{2 i \left (f x +e \right )}+i b +2 a \,{\mathrm e}^{i \left (f x +e \right )}\right )^{2} \left (a^{2}-b^{2}\right )^{2} f b}-\frac {\ln \left ({\mathrm e}^{i \left (f x +e \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a -a^{2}+b^{2}}{\sqrt {-a^{2}+b^{2}}\, b}\right ) a^{2} c}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} f}+\frac {3 \ln \left ({\mathrm e}^{i \left (f x +e \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a -a^{2}+b^{2}}{\sqrt {-a^{2}+b^{2}}\, b}\right ) a b d}{2 \sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} f}-\frac {\ln \left ({\mathrm e}^{i \left (f x +e \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a -a^{2}+b^{2}}{\sqrt {-a^{2}+b^{2}}\, b}\right ) b^{2} c}{2 \sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} f}+\frac {\ln \left ({\mathrm e}^{i \left (f x +e \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a +a^{2}-b^{2}}{\sqrt {-a^{2}+b^{2}}\, b}\right ) a^{2} c}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} f}-\frac {3 \ln \left ({\mathrm e}^{i \left (f x +e \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a +a^{2}-b^{2}}{\sqrt {-a^{2}+b^{2}}\, b}\right ) a b d}{2 \sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} f}+\frac {\ln \left ({\mathrm e}^{i \left (f x +e \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a +a^{2}-b^{2}}{\sqrt {-a^{2}+b^{2}}\, b}\right ) b^{2} c}{2 \sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} f}\) \(767\)

Input:

int((c+d*sin(f*x+e))/(a+b*sin(f*x+e))^3,x,method=_RETURNVERBOSE)
 

Output:

1/f*(2*(-1/2*b*(3*a^3*d-5*a^2*b*c+2*b^3*c)/a/(a^4-2*a^2*b^2+b^4)*tan(1/2*f 
*x+1/2*e)^3-1/2*(2*a^5*d-4*a^4*b*c+5*a^3*b^2*d-7*a^2*b^3*c+2*a*b^4*d+2*b^5 
*c)/(a^4-2*a^2*b^2+b^4)/a^2*tan(1/2*f*x+1/2*e)^2-1/2*b*(5*a^3*d-11*a^2*b*c 
+4*a*b^2*d+2*b^3*c)/a/(a^4-2*a^2*b^2+b^4)*tan(1/2*f*x+1/2*e)-1/2*(2*a^3*d- 
4*a^2*b*c+a*b^2*d+b^3*c)/(a^4-2*a^2*b^2+b^4))/(tan(1/2*f*x+1/2*e)^2*a+2*b* 
tan(1/2*f*x+1/2*e)+a)^2+(2*a^2*c-3*a*b*d+b^2*c)/(a^4-2*a^2*b^2+b^4)/(a^2-b 
^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*f*x+1/2*e)+2*b)/(a^2-b^2)^(1/2)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 357 vs. \(2 (153) = 306\).

Time = 0.12 (sec) , antiderivative size = 799, normalized size of antiderivative = 4.93 \[ \int \frac {c+d \sin (e+f x)}{(a+b \sin (e+f x))^3} \, dx =\text {Too large to display} \] Input:

integrate((c+d*sin(f*x+e))/(a+b*sin(f*x+e))^3,x, algorithm="fricas")
 

Output:

[-1/4*(2*(3*(a^3*b^2 - a*b^4)*c - (a^4*b + a^2*b^3 - 2*b^5)*d)*cos(f*x + e 
)*sin(f*x + e) + ((3*a*b^3*d - (2*a^2*b^2 + b^4)*c)*cos(f*x + e)^2 + (2*a^ 
4 + 3*a^2*b^2 + b^4)*c - 3*(a^3*b + a*b^3)*d - 2*(3*a^2*b^2*d - (2*a^3*b + 
 a*b^3)*c)*sin(f*x + e))*sqrt(-a^2 + b^2)*log(-((2*a^2 - b^2)*cos(f*x + e) 
^2 - 2*a*b*sin(f*x + e) - a^2 - b^2 - 2*(a*cos(f*x + e)*sin(f*x + e) + b*c 
os(f*x + e))*sqrt(-a^2 + b^2))/(b^2*cos(f*x + e)^2 - 2*a*b*sin(f*x + e) - 
a^2 - b^2)) + 2*((4*a^4*b - 5*a^2*b^3 + b^5)*c - (2*a^5 - a^3*b^2 - a*b^4) 
*d)*cos(f*x + e))/((a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*f*cos(f*x + e)^ 
2 - 2*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a*b^7)*f*sin(f*x + e) - (a^8 - 2*a^ 
6*b^2 + 2*a^2*b^6 - b^8)*f), -1/2*((3*(a^3*b^2 - a*b^4)*c - (a^4*b + a^2*b 
^3 - 2*b^5)*d)*cos(f*x + e)*sin(f*x + e) - ((3*a*b^3*d - (2*a^2*b^2 + b^4) 
*c)*cos(f*x + e)^2 + (2*a^4 + 3*a^2*b^2 + b^4)*c - 3*(a^3*b + a*b^3)*d - 2 
*(3*a^2*b^2*d - (2*a^3*b + a*b^3)*c)*sin(f*x + e))*sqrt(a^2 - b^2)*arctan( 
-(a*sin(f*x + e) + b)/(sqrt(a^2 - b^2)*cos(f*x + e))) + ((4*a^4*b - 5*a^2* 
b^3 + b^5)*c - (2*a^5 - a^3*b^2 - a*b^4)*d)*cos(f*x + e))/((a^6*b^2 - 3*a^ 
4*b^4 + 3*a^2*b^6 - b^8)*f*cos(f*x + e)^2 - 2*(a^7*b - 3*a^5*b^3 + 3*a^3*b 
^5 - a*b^7)*f*sin(f*x + e) - (a^8 - 2*a^6*b^2 + 2*a^2*b^6 - b^8)*f)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {c+d \sin (e+f x)}{(a+b \sin (e+f x))^3} \, dx=\text {Timed out} \] Input:

integrate((c+d*sin(f*x+e))/(a+b*sin(f*x+e))**3,x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {c+d \sin (e+f x)}{(a+b \sin (e+f x))^3} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((c+d*sin(f*x+e))/(a+b*sin(f*x+e))^3,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 412 vs. \(2 (153) = 306\).

Time = 0.39 (sec) , antiderivative size = 412, normalized size of antiderivative = 2.54 \[ \int \frac {c+d \sin (e+f x)}{(a+b \sin (e+f x))^3} \, dx=\frac {\frac {{\left (2 \, a^{2} c + b^{2} c - 3 \, a b d\right )} {\left (\pi \left \lfloor \frac {f x + e}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (a\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} - b^{2}}} + \frac {5 \, a^{3} b^{2} c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} - 2 \, a b^{4} c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} - 3 \, a^{4} b d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 4 \, a^{4} b c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 7 \, a^{2} b^{3} c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 2 \, b^{5} c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 2 \, a^{5} d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 5 \, a^{3} b^{2} d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 2 \, a b^{4} d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 11 \, a^{3} b^{2} c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 2 \, a b^{4} c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 5 \, a^{4} b d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 4 \, a^{2} b^{3} d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 4 \, a^{4} b c - a^{2} b^{3} c - 2 \, a^{5} d - a^{3} b^{2} d}{{\left (a^{6} - 2 \, a^{4} b^{2} + a^{2} b^{4}\right )} {\left (a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + a\right )}^{2}}}{f} \] Input:

integrate((c+d*sin(f*x+e))/(a+b*sin(f*x+e))^3,x, algorithm="giac")
 

Output:

((2*a^2*c + b^2*c - 3*a*b*d)*(pi*floor(1/2*(f*x + e)/pi + 1/2)*sgn(a) + ar 
ctan((a*tan(1/2*f*x + 1/2*e) + b)/sqrt(a^2 - b^2)))/((a^4 - 2*a^2*b^2 + b^ 
4)*sqrt(a^2 - b^2)) + (5*a^3*b^2*c*tan(1/2*f*x + 1/2*e)^3 - 2*a*b^4*c*tan( 
1/2*f*x + 1/2*e)^3 - 3*a^4*b*d*tan(1/2*f*x + 1/2*e)^3 + 4*a^4*b*c*tan(1/2* 
f*x + 1/2*e)^2 + 7*a^2*b^3*c*tan(1/2*f*x + 1/2*e)^2 - 2*b^5*c*tan(1/2*f*x 
+ 1/2*e)^2 - 2*a^5*d*tan(1/2*f*x + 1/2*e)^2 - 5*a^3*b^2*d*tan(1/2*f*x + 1/ 
2*e)^2 - 2*a*b^4*d*tan(1/2*f*x + 1/2*e)^2 + 11*a^3*b^2*c*tan(1/2*f*x + 1/2 
*e) - 2*a*b^4*c*tan(1/2*f*x + 1/2*e) - 5*a^4*b*d*tan(1/2*f*x + 1/2*e) - 4* 
a^2*b^3*d*tan(1/2*f*x + 1/2*e) + 4*a^4*b*c - a^2*b^3*c - 2*a^5*d - a^3*b^2 
*d)/((a^6 - 2*a^4*b^2 + a^2*b^4)*(a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f 
*x + 1/2*e) + a)^2))/f
 

Mupad [B] (verification not implemented)

Time = 18.80 (sec) , antiderivative size = 477, normalized size of antiderivative = 2.94 \[ \int \frac {c+d \sin (e+f x)}{(a+b \sin (e+f x))^3} \, dx=\frac {\mathrm {atan}\left (\frac {\left (\frac {\left (2\,a^4\,b-4\,a^2\,b^3+2\,b^5\right )\,\left (2\,c\,a^2-3\,d\,a\,b+c\,b^2\right )}{2\,{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}\,\left (a^4-2\,a^2\,b^2+b^4\right )}+\frac {a\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (2\,c\,a^2-3\,d\,a\,b+c\,b^2\right )}{{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}}\right )\,\left (a^4-2\,a^2\,b^2+b^4\right )}{2\,c\,a^2-3\,d\,a\,b+c\,b^2}\right )\,\left (2\,c\,a^2-3\,d\,a\,b+c\,b^2\right )}{f\,{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}}-\frac {\frac {2\,d\,a^3-4\,c\,a^2\,b+d\,a\,b^2+c\,b^3}{a^4-2\,a^2\,b^2+b^4}+\frac {b\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3\,\left (3\,d\,a^3-5\,c\,a^2\,b+2\,c\,b^3\right )}{a\,\left (a^4-2\,a^2\,b^2+b^4\right )}+\frac {b\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (5\,d\,a^3-11\,c\,a^2\,b+4\,d\,a\,b^2+2\,c\,b^3\right )}{a\,\left (a^4-2\,a^2\,b^2+b^4\right )}+\frac {{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2\,\left (a^2+2\,b^2\right )\,\left (2\,d\,a^3-4\,c\,a^2\,b+d\,a\,b^2+c\,b^3\right )}{a^2\,\left (a^4-2\,a^2\,b^2+b^4\right )}}{f\,\left ({\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2\,\left (2\,a^2+4\,b^2\right )+a^2\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4+a^2+4\,a\,b\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3+4\,a\,b\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\right )} \] Input:

int((c + d*sin(e + f*x))/(a + b*sin(e + f*x))^3,x)
 

Output:

(atan(((((2*a^4*b + 2*b^5 - 4*a^2*b^3)*(2*a^2*c + b^2*c - 3*a*b*d))/(2*(a 
+ b)^(5/2)*(a - b)^(5/2)*(a^4 + b^4 - 2*a^2*b^2)) + (a*tan(e/2 + (f*x)/2)* 
(2*a^2*c + b^2*c - 3*a*b*d))/((a + b)^(5/2)*(a - b)^(5/2)))*(a^4 + b^4 - 2 
*a^2*b^2))/(2*a^2*c + b^2*c - 3*a*b*d))*(2*a^2*c + b^2*c - 3*a*b*d))/(f*(a 
 + b)^(5/2)*(a - b)^(5/2)) - ((2*a^3*d + b^3*c - 4*a^2*b*c + a*b^2*d)/(a^4 
 + b^4 - 2*a^2*b^2) + (b*tan(e/2 + (f*x)/2)^3*(3*a^3*d + 2*b^3*c - 5*a^2*b 
*c))/(a*(a^4 + b^4 - 2*a^2*b^2)) + (b*tan(e/2 + (f*x)/2)*(5*a^3*d + 2*b^3* 
c - 11*a^2*b*c + 4*a*b^2*d))/(a*(a^4 + b^4 - 2*a^2*b^2)) + (tan(e/2 + (f*x 
)/2)^2*(a^2 + 2*b^2)*(2*a^3*d + b^3*c - 4*a^2*b*c + a*b^2*d))/(a^2*(a^4 + 
b^4 - 2*a^2*b^2)))/(f*(tan(e/2 + (f*x)/2)^2*(2*a^2 + 4*b^2) + a^2*tan(e/2 
+ (f*x)/2)^4 + a^2 + 4*a*b*tan(e/2 + (f*x)/2)^3 + 4*a*b*tan(e/2 + (f*x)/2) 
))
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 973, normalized size of antiderivative = 6.01 \[ \int \frac {c+d \sin (e+f x)}{(a+b \sin (e+f x))^3} \, dx =\text {Too large to display} \] Input:

int((c+d*sin(f*x+e))/(a+b*sin(f*x+e))^3,x)
 

Output:

(8*sqrt(a**2 - b**2)*atan((tan((e + f*x)/2)*a + b)/sqrt(a**2 - b**2))*sin( 
e + f*x)**2*a**3*b**2*c - 12*sqrt(a**2 - b**2)*atan((tan((e + f*x)/2)*a + 
b)/sqrt(a**2 - b**2))*sin(e + f*x)**2*a**2*b**3*d + 4*sqrt(a**2 - b**2)*at 
an((tan((e + f*x)/2)*a + b)/sqrt(a**2 - b**2))*sin(e + f*x)**2*a*b**4*c + 
16*sqrt(a**2 - b**2)*atan((tan((e + f*x)/2)*a + b)/sqrt(a**2 - b**2))*sin( 
e + f*x)*a**4*b*c - 24*sqrt(a**2 - b**2)*atan((tan((e + f*x)/2)*a + b)/sqr 
t(a**2 - b**2))*sin(e + f*x)*a**3*b**2*d + 8*sqrt(a**2 - b**2)*atan((tan(( 
e + f*x)/2)*a + b)/sqrt(a**2 - b**2))*sin(e + f*x)*a**2*b**3*c + 8*sqrt(a* 
*2 - b**2)*atan((tan((e + f*x)/2)*a + b)/sqrt(a**2 - b**2))*a**5*c - 12*sq 
rt(a**2 - b**2)*atan((tan((e + f*x)/2)*a + b)/sqrt(a**2 - b**2))*a**4*b*d 
+ 4*sqrt(a**2 - b**2)*atan((tan((e + f*x)/2)*a + b)/sqrt(a**2 - b**2))*a** 
3*b**2*c - 2*cos(e + f*x)*sin(e + f*x)*a**5*b*d + 6*cos(e + f*x)*sin(e + f 
*x)*a**4*b**2*c - 2*cos(e + f*x)*sin(e + f*x)*a**3*b**3*d - 6*cos(e + f*x) 
*sin(e + f*x)*a**2*b**4*c + 4*cos(e + f*x)*sin(e + f*x)*a*b**5*d - 4*cos(e 
 + f*x)*a**6*d + 8*cos(e + f*x)*a**5*b*c + 2*cos(e + f*x)*a**4*b**2*d - 10 
*cos(e + f*x)*a**3*b**3*c + 2*cos(e + f*x)*a**2*b**4*d + 2*cos(e + f*x)*a* 
b**5*c - sin(e + f*x)**2*a**4*b**2*d + 3*sin(e + f*x)**2*a**3*b**3*c - sin 
(e + f*x)**2*a**2*b**4*d - 3*sin(e + f*x)**2*a*b**5*c + 2*sin(e + f*x)**2* 
b**6*d - 2*sin(e + f*x)*a**5*b*d + 6*sin(e + f*x)*a**4*b**2*c - 2*sin(e + 
f*x)*a**3*b**3*d - 6*sin(e + f*x)*a**2*b**4*c + 4*sin(e + f*x)*a*b**5*d...