\(\int (a+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx\) [732]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 181 \[ \int (a+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=-\frac {2 b \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}+\frac {2 (b c+3 a d) E\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {c+d \sin (e+f x)}}{3 d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {2 b \left (c^2-d^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right ),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{3 d f \sqrt {c+d \sin (e+f x)}} \] Output:

-2/3*b*cos(f*x+e)*(c+d*sin(f*x+e))^(1/2)/f-2/3*(3*a*d+b*c)*EllipticE(cos(1 
/2*e+1/4*Pi+1/2*f*x),2^(1/2)*(d/(c+d))^(1/2))*(c+d*sin(f*x+e))^(1/2)/d/f/( 
(c+d*sin(f*x+e))/(c+d))^(1/2)-2/3*b*(c^2-d^2)*InverseJacobiAM(1/2*e-1/4*Pi 
+1/2*f*x,2^(1/2)*(d/(c+d))^(1/2))*((c+d*sin(f*x+e))/(c+d))^(1/2)/d/f/(c+d* 
sin(f*x+e))^(1/2)
 

Mathematica [A] (verified)

Time = 0.66 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.84 \[ \int (a+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=-\frac {2 \left (b d \cos (e+f x) (c+d \sin (e+f x))+(c+d) (b c+3 a d) E\left (\frac {1}{4} (-2 e+\pi -2 f x)|\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}-b \left (c^2-d^2\right ) \operatorname {EllipticF}\left (\frac {1}{4} (-2 e+\pi -2 f x),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}\right )}{3 d f \sqrt {c+d \sin (e+f x)}} \] Input:

Integrate[(a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]],x]
 

Output:

(-2*(b*d*Cos[e + f*x]*(c + d*Sin[e + f*x]) + (c + d)*(b*c + 3*a*d)*Ellipti 
cE[(-2*e + Pi - 2*f*x)/4, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d) 
] - b*(c^2 - d^2)*EllipticF[(-2*e + Pi - 2*f*x)/4, (2*d)/(c + d)]*Sqrt[(c 
+ d*Sin[e + f*x])/(c + d)]))/(3*d*f*Sqrt[c + d*Sin[e + f*x]])
 

Rubi [A] (verified)

Time = 0.82 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.01, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 3232, 27, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)}dx\)

\(\Big \downarrow \) 3232

\(\displaystyle \frac {2}{3} \int \frac {3 a c+b d+(b c+3 a d) \sin (e+f x)}{2 \sqrt {c+d \sin (e+f x)}}dx-\frac {2 b \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {3 a c+b d+(b c+3 a d) \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}}dx-\frac {2 b \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {3 a c+b d+(b c+3 a d) \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}}dx-\frac {2 b \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {1}{3} \left (\frac {(3 a d+b c) \int \sqrt {c+d \sin (e+f x)}dx}{d}-\frac {b \left (c^2-d^2\right ) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\right )-\frac {2 b \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\frac {(3 a d+b c) \int \sqrt {c+d \sin (e+f x)}dx}{d}-\frac {b \left (c^2-d^2\right ) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\right )-\frac {2 b \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {1}{3} \left (\frac {(3 a d+b c) \sqrt {c+d \sin (e+f x)} \int \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}dx}{d \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {b \left (c^2-d^2\right ) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\right )-\frac {2 b \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\frac {(3 a d+b c) \sqrt {c+d \sin (e+f x)} \int \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}dx}{d \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {b \left (c^2-d^2\right ) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\right )-\frac {2 b \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {1}{3} \left (\frac {2 (3 a d+b c) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {b \left (c^2-d^2\right ) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\right )-\frac {2 b \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {1}{3} \left (\frac {2 (3 a d+b c) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {b \left (c^2-d^2\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \int \frac {1}{\sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}}dx}{d \sqrt {c+d \sin (e+f x)}}\right )-\frac {2 b \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\frac {2 (3 a d+b c) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {b \left (c^2-d^2\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \int \frac {1}{\sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}}dx}{d \sqrt {c+d \sin (e+f x)}}\right )-\frac {2 b \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {1}{3} \left (\frac {2 (3 a d+b c) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {2 b \left (c^2-d^2\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \operatorname {EllipticF}\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right ),\frac {2 d}{c+d}\right )}{d f \sqrt {c+d \sin (e+f x)}}\right )-\frac {2 b \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{3 f}\)

Input:

Int[(a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]],x]
 

Output:

(-2*b*Cos[e + f*x]*Sqrt[c + d*Sin[e + f*x]])/(3*f) + ((2*(b*c + 3*a*d)*Ell 
ipticE[(e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[c + d*Sin[e + f*x]])/(d*f*S 
qrt[(c + d*Sin[e + f*x])/(c + d)]) - (2*b*(c^2 - d^2)*EllipticF[(e - Pi/2 
+ f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/(d*f*Sqrt[c + 
 d*Sin[e + f*x]]))/3
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3232
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/( 
f*(m + 1))), x] + Simp[1/(m + 1)   Int[(a + b*Sin[e + f*x])^(m - 1)*Simp[b* 
d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ 
[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 
 0] && IntegerQ[2*m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(700\) vs. \(2(170)=340\).

Time = 2.74 (sec) , antiderivative size = 701, normalized size of antiderivative = 3.87

method result size
parts \(\frac {2 a \left (c -d \right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \left (c \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )+\operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d -\operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c -\operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d \right )}{d \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}+\frac {2 b \left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c^{2} d -\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d^{3}-\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c^{3}+\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c \,d^{2}+d^{3} \sin \left (f x +e \right )^{3}+c \,d^{2} \sin \left (f x +e \right )^{2}-d^{3} \sin \left (f x +e \right )-c \,d^{2}\right )}{3 d^{2} \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}\) \(701\)
default \(\frac {2 a \,c^{2} \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d -2 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) a \,d^{3}+\frac {2 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) b \,c^{2} d}{3}-\frac {2 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) b \,d^{3}}{3}-2 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) a \,c^{2} d +2 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) a \,d^{3}-\frac {2 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) b \,c^{3}}{3}+\frac {2 \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (1+\sin \left (f x +e \right )\right )}{c -d}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) b c \,d^{2}}{3}+\frac {2 b \,d^{3} \sin \left (f x +e \right )^{3}}{3}+\frac {2 b c \,d^{2} \sin \left (f x +e \right )^{2}}{3}-\frac {2 b \,d^{3} \sin \left (f x +e \right )}{3}-\frac {2 b c \,d^{2}}{3}}{d^{2} \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}\) \(862\)

Input:

int((a+b*sin(f*x+e))*(c+d*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2*a*(c-d)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(-(sin(f*x+e)-1)*d/(c+d))^(1/2)*( 
-d*(1+sin(f*x+e))/(c-d))^(1/2)/d*(c*EllipticF(((c+d*sin(f*x+e))/(c-d))^(1/ 
2),((c-d)/(c+d))^(1/2))+EllipticF(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c 
+d))^(1/2))*d-EllipticE(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2) 
)*c-EllipticE(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))*d)/cos(f 
*x+e)/(c+d*sin(f*x+e))^(1/2)/f+2/3*b*(((c+d*sin(f*x+e))/(c-d))^(1/2)*(-(si 
n(f*x+e)-1)*d/(c+d))^(1/2)*(-d*(1+sin(f*x+e))/(c-d))^(1/2)*EllipticF(((c+d 
*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))*c^2*d-((c+d*sin(f*x+e))/(c- 
d))^(1/2)*(-(sin(f*x+e)-1)*d/(c+d))^(1/2)*(-d*(1+sin(f*x+e))/(c-d))^(1/2)* 
EllipticF(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2))*d^3-((c+d*si 
n(f*x+e))/(c-d))^(1/2)*(-(sin(f*x+e)-1)*d/(c+d))^(1/2)*(-d*(1+sin(f*x+e))/ 
(c-d))^(1/2)*EllipticE(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2)) 
*c^3+((c+d*sin(f*x+e))/(c-d))^(1/2)*(-(sin(f*x+e)-1)*d/(c+d))^(1/2)*(-d*(1 
+sin(f*x+e))/(c-d))^(1/2)*EllipticE(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/ 
(c+d))^(1/2))*c*d^2+d^3*sin(f*x+e)^3+c*d^2*sin(f*x+e)^2-d^3*sin(f*x+e)-c*d 
^2)/d^2/cos(f*x+e)/(c+d*sin(f*x+e))^(1/2)/f
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.13 (sec) , antiderivative size = 431, normalized size of antiderivative = 2.38 \[ \int (a+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=-\frac {2 \, {\left (3 \, \sqrt {d \sin \left (f x + e\right ) + c} b d^{2} \cos \left (f x + e\right ) + {\left (2 \, b c^{2} - 3 \, a c d - 3 \, b d^{2}\right )} \sqrt {\frac {1}{2} i \, d} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) - 3 i \, d \sin \left (f x + e\right ) - 2 i \, c}{3 \, d}\right ) + {\left (2 \, b c^{2} - 3 \, a c d - 3 \, b d^{2}\right )} \sqrt {-\frac {1}{2} i \, d} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) + 3 i \, d \sin \left (f x + e\right ) + 2 i \, c}{3 \, d}\right ) + 3 \, {\left (i \, b c d + 3 i \, a d^{2}\right )} \sqrt {\frac {1}{2} i \, d} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) - 3 i \, d \sin \left (f x + e\right ) - 2 i \, c}{3 \, d}\right )\right ) + 3 \, {\left (-i \, b c d - 3 i \, a d^{2}\right )} \sqrt {-\frac {1}{2} i \, d} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) + 3 i \, d \sin \left (f x + e\right ) + 2 i \, c}{3 \, d}\right )\right )\right )}}{9 \, d^{2} f} \] Input:

integrate((a+b*sin(f*x+e))*(c+d*sin(f*x+e))^(1/2),x, algorithm="fricas")
 

Output:

-2/9*(3*sqrt(d*sin(f*x + e) + c)*b*d^2*cos(f*x + e) + (2*b*c^2 - 3*a*c*d - 
 3*b*d^2)*sqrt(1/2*I*d)*weierstrassPInverse(-4/3*(4*c^2 - 3*d^2)/d^2, -8/2 
7*(8*I*c^3 - 9*I*c*d^2)/d^3, 1/3*(3*d*cos(f*x + e) - 3*I*d*sin(f*x + e) - 
2*I*c)/d) + (2*b*c^2 - 3*a*c*d - 3*b*d^2)*sqrt(-1/2*I*d)*weierstrassPInver 
se(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(-8*I*c^3 + 9*I*c*d^2)/d^3, 1/3*(3*d*co 
s(f*x + e) + 3*I*d*sin(f*x + e) + 2*I*c)/d) + 3*(I*b*c*d + 3*I*a*d^2)*sqrt 
(1/2*I*d)*weierstrassZeta(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(8*I*c^3 - 9*I*c 
*d^2)/d^3, weierstrassPInverse(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(8*I*c^3 - 
9*I*c*d^2)/d^3, 1/3*(3*d*cos(f*x + e) - 3*I*d*sin(f*x + e) - 2*I*c)/d)) + 
3*(-I*b*c*d - 3*I*a*d^2)*sqrt(-1/2*I*d)*weierstrassZeta(-4/3*(4*c^2 - 3*d^ 
2)/d^2, -8/27*(-8*I*c^3 + 9*I*c*d^2)/d^3, weierstrassPInverse(-4/3*(4*c^2 
- 3*d^2)/d^2, -8/27*(-8*I*c^3 + 9*I*c*d^2)/d^3, 1/3*(3*d*cos(f*x + e) + 3* 
I*d*sin(f*x + e) + 2*I*c)/d)))/(d^2*f)
 

Sympy [F]

\[ \int (a+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=\int \left (a + b \sin {\left (e + f x \right )}\right ) \sqrt {c + d \sin {\left (e + f x \right )}}\, dx \] Input:

integrate((a+b*sin(f*x+e))*(c+d*sin(f*x+e))**(1/2),x)
 

Output:

Integral((a + b*sin(e + f*x))*sqrt(c + d*sin(e + f*x)), x)
 

Maxima [F]

\[ \int (a+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=\int { {\left (b \sin \left (f x + e\right ) + a\right )} \sqrt {d \sin \left (f x + e\right ) + c} \,d x } \] Input:

integrate((a+b*sin(f*x+e))*(c+d*sin(f*x+e))^(1/2),x, algorithm="maxima")
 

Output:

integrate((b*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c), x)
 

Giac [F]

\[ \int (a+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=\int { {\left (b \sin \left (f x + e\right ) + a\right )} \sqrt {d \sin \left (f x + e\right ) + c} \,d x } \] Input:

integrate((a+b*sin(f*x+e))*(c+d*sin(f*x+e))^(1/2),x, algorithm="giac")
 

Output:

integrate((b*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c), x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=\int \left (a+b\,\sin \left (e+f\,x\right )\right )\,\sqrt {c+d\,\sin \left (e+f\,x\right )} \,d x \] Input:

int((a + b*sin(e + f*x))*(c + d*sin(e + f*x))^(1/2),x)
 

Output:

int((a + b*sin(e + f*x))*(c + d*sin(e + f*x))^(1/2), x)
 

Reduce [F]

\[ \int (a+b \sin (e+f x)) \sqrt {c+d \sin (e+f x)} \, dx=\left (\int \sqrt {\sin \left (f x +e \right ) d +c}d x \right ) a +\left (\int \sqrt {\sin \left (f x +e \right ) d +c}\, \sin \left (f x +e \right )d x \right ) b \] Input:

int((a+b*sin(f*x+e))*(c+d*sin(f*x+e))^(1/2),x)
 

Output:

int(sqrt(sin(e + f*x)*d + c),x)*a + int(sqrt(sin(e + f*x)*d + c)*sin(e + f 
*x),x)*b