\(\int \frac {1}{(a+b \sin (e+f x))^{3/2} (c+d \sin (e+f x))^{3/2}} \, dx\) [800]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 495 \[ \int \frac {1}{(a+b \sin (e+f x))^{3/2} (c+d \sin (e+f x))^{3/2}} \, dx=\frac {2 b^2 \cos (e+f x)}{\left (a^2-b^2\right ) (b c-a d) f \sqrt {a+b \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}-\frac {2 \left (a^2 d^2+b^2 \left (c^2-2 d^2\right )\right ) E\left (\arcsin \left (\frac {\sqrt {c+d} \sqrt {a+b \sin (e+f x)}}{\sqrt {a+b} \sqrt {c+d \sin (e+f x)}}\right )|\frac {(a+b) (c-d)}{(a-b) (c+d)}\right ) \sec (e+f x) \sqrt {\frac {(b c-a d) (1-\sin (e+f x))}{(a+b) (c+d \sin (e+f x))}} \sqrt {-\frac {(b c-a d) (1+\sin (e+f x))}{(a-b) (c+d \sin (e+f x))}} (c+d \sin (e+f x))}{\sqrt {a+b} (c-d) \sqrt {c+d} (b c-a d)^3 f}+\frac {2 (b (c-2 d)-a d) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c+d} \sqrt {a+b \sin (e+f x)}}{\sqrt {a+b} \sqrt {c+d \sin (e+f x)}}\right ),\frac {(a+b) (c-d)}{(a-b) (c+d)}\right ) \sec (e+f x) \sqrt {\frac {(b c-a d) (1-\sin (e+f x))}{(a+b) (c+d \sin (e+f x))}} \sqrt {-\frac {(b c-a d) (1+\sin (e+f x))}{(a-b) (c+d \sin (e+f x))}} (c+d \sin (e+f x))}{\sqrt {a+b} (c-d) \sqrt {c+d} (b c-a d)^2 f} \] Output:

2*b^2*cos(f*x+e)/(a^2-b^2)/(-a*d+b*c)/f/(a+b*sin(f*x+e))^(1/2)/(c+d*sin(f* 
x+e))^(1/2)-2*(a^2*d^2+b^2*(c^2-2*d^2))*EllipticE((c+d)^(1/2)*(a+b*sin(f*x 
+e))^(1/2)/(a+b)^(1/2)/(c+d*sin(f*x+e))^(1/2),((a+b)*(c-d)/(a-b)/(c+d))^(1 
/2))*sec(f*x+e)*((-a*d+b*c)*(1-sin(f*x+e))/(a+b)/(c+d*sin(f*x+e)))^(1/2)*( 
-(-a*d+b*c)*(1+sin(f*x+e))/(a-b)/(c+d*sin(f*x+e)))^(1/2)*(c+d*sin(f*x+e))/ 
(a+b)^(1/2)/(c-d)/(c+d)^(1/2)/(-a*d+b*c)^3/f+2*(b*(c-2*d)-a*d)*EllipticF(( 
c+d)^(1/2)*(a+b*sin(f*x+e))^(1/2)/(a+b)^(1/2)/(c+d*sin(f*x+e))^(1/2),((a+b 
)*(c-d)/(a-b)/(c+d))^(1/2))*sec(f*x+e)*((-a*d+b*c)*(1-sin(f*x+e))/(a+b)/(c 
+d*sin(f*x+e)))^(1/2)*(-(-a*d+b*c)*(1+sin(f*x+e))/(a-b)/(c+d*sin(f*x+e)))^ 
(1/2)*(c+d*sin(f*x+e))/(a+b)^(1/2)/(c-d)/(c+d)^(1/2)/(-a*d+b*c)^2/f
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(2082\) vs. \(2(495)=990\).

Time = 6.77 (sec) , antiderivative size = 2082, normalized size of antiderivative = 4.21 \[ \int \frac {1}{(a+b \sin (e+f x))^{3/2} (c+d \sin (e+f x))^{3/2}} \, dx=\text {Result too large to show} \] Input:

Integrate[1/((a + b*Sin[e + f*x])^(3/2)*(c + d*Sin[e + f*x])^(3/2)),x]
 

Output:

(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]*((2*b^3*Cos[e + f*x])/( 
(a^2 - b^2)*(-(b*c) + a*d)^2*(a + b*Sin[e + f*x])) + (2*d^3*Cos[e + f*x])/ 
((b*c - a*d)^2*(c^2 - d^2)*(c + d*Sin[e + f*x]))))/f + ((-4*(-(b*c) + a*d) 
*(a*b^2*c^3 - 2*a^2*b*c^2*d + 2*b^3*c^2*d + a^3*c*d^2 - 2*a*b^2*c*d^2 + 2* 
a^2*b*d^3 - 2*b^3*d^3)*Sqrt[((c + d)*Cot[(-e + Pi/2 - f*x)/2]^2)/(-c + d)] 
*EllipticF[ArcSin[Sqrt[((-a - b)*Csc[(-e + Pi/2 - f*x)/2]^2*(c + d*Sin[e + 
 f*x]))/(-(b*c) + a*d)]/Sqrt[2]], (2*(-(b*c) + a*d))/((a + b)*(-c + d))]*S 
ec[e + f*x]*Sin[(-e + Pi/2 - f*x)/2]^4*Sqrt[((c + d)*Csc[(-e + Pi/2 - f*x) 
/2]^2*(a + b*Sin[e + f*x]))/(-(b*c) + a*d)]*Sqrt[((-a - b)*Csc[(-e + Pi/2 
- f*x)/2]^2*(c + d*Sin[e + f*x]))/(-(b*c) + a*d)])/((a + b)*(c + d)*Sqrt[a 
 + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]) - 4*(-(b*c) + a*d)*(b^3*c^3 + 
 a*b^2*c^2*d + a^2*b*c*d^2 - 2*b^3*c*d^2 + a^3*d^3 - 2*a*b^2*d^3)*((Sqrt[( 
(c + d)*Cot[(-e + Pi/2 - f*x)/2]^2)/(-c + d)]*EllipticF[ArcSin[Sqrt[((-a - 
 b)*Csc[(-e + Pi/2 - f*x)/2]^2*(c + d*Sin[e + f*x]))/(-(b*c) + a*d)]/Sqrt[ 
2]], (2*(-(b*c) + a*d))/((a + b)*(-c + d))]*Sec[e + f*x]*Sin[(-e + Pi/2 - 
f*x)/2]^4*Sqrt[((c + d)*Csc[(-e + Pi/2 - f*x)/2]^2*(a + b*Sin[e + f*x]))/( 
-(b*c) + a*d)]*Sqrt[((-a - b)*Csc[(-e + Pi/2 - f*x)/2]^2*(c + d*Sin[e + f* 
x]))/(-(b*c) + a*d)])/((a + b)*(c + d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d 
*Sin[e + f*x]]) - (Sqrt[((c + d)*Cot[(-e + Pi/2 - f*x)/2]^2)/(-c + d)]*Ell 
ipticPi[(-(b*c) + a*d)/((a + b)*d), ArcSin[Sqrt[((-a - b)*Csc[(-e + Pi/...
 

Rubi [A] (verified)

Time = 1.51 (sec) , antiderivative size = 528, normalized size of antiderivative = 1.07, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.276, Rules used = {3042, 3281, 27, 3042, 3477, 3042, 3297, 3475}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a+b \sin (e+f x))^{3/2} (c+d \sin (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(a+b \sin (e+f x))^{3/2} (c+d \sin (e+f x))^{3/2}}dx\)

\(\Big \downarrow \) 3281

\(\displaystyle \frac {2 b^2 \cos (e+f x)}{f \left (a^2-b^2\right ) (b c-a d) \sqrt {a+b \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}-\frac {2 \int -\frac {-d a^2+b c a+2 b^2 d+b (b c+a d) \sin (e+f x)}{2 \sqrt {a+b \sin (e+f x)} (c+d \sin (e+f x))^{3/2}}dx}{\left (a^2-b^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {-d a^2+b c a+2 b^2 d+b (b c+a d) \sin (e+f x)}{\sqrt {a+b \sin (e+f x)} (c+d \sin (e+f x))^{3/2}}dx}{\left (a^2-b^2\right ) (b c-a d)}+\frac {2 b^2 \cos (e+f x)}{f \left (a^2-b^2\right ) (b c-a d) \sqrt {a+b \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {-d a^2+b c a+2 b^2 d+b (b c+a d) \sin (e+f x)}{\sqrt {a+b \sin (e+f x)} (c+d \sin (e+f x))^{3/2}}dx}{\left (a^2-b^2\right ) (b c-a d)}+\frac {2 b^2 \cos (e+f x)}{f \left (a^2-b^2\right ) (b c-a d) \sqrt {a+b \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {\frac {\left (a^2 d^2+b^2 \left (c^2-2 d^2\right )\right ) \int \frac {\sin (e+f x)+1}{\sqrt {a+b \sin (e+f x)} (c+d \sin (e+f x))^{3/2}}dx}{c-d}+\frac {(a-b) (-a d+b c-2 b d) \int \frac {1}{\sqrt {a+b \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}dx}{c-d}}{\left (a^2-b^2\right ) (b c-a d)}+\frac {2 b^2 \cos (e+f x)}{f \left (a^2-b^2\right ) (b c-a d) \sqrt {a+b \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (a^2 d^2+b^2 \left (c^2-2 d^2\right )\right ) \int \frac {\sin (e+f x)+1}{\sqrt {a+b \sin (e+f x)} (c+d \sin (e+f x))^{3/2}}dx}{c-d}+\frac {(a-b) (-a d+b c-2 b d) \int \frac {1}{\sqrt {a+b \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}dx}{c-d}}{\left (a^2-b^2\right ) (b c-a d)}+\frac {2 b^2 \cos (e+f x)}{f \left (a^2-b^2\right ) (b c-a d) \sqrt {a+b \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\)

\(\Big \downarrow \) 3297

\(\displaystyle \frac {\frac {\left (a^2 d^2+b^2 \left (c^2-2 d^2\right )\right ) \int \frac {\sin (e+f x)+1}{\sqrt {a+b \sin (e+f x)} (c+d \sin (e+f x))^{3/2}}dx}{c-d}+\frac {2 (a-b) \sqrt {a+b} (-a d+b c-2 b d) \sec (e+f x) (c+d \sin (e+f x)) \sqrt {\frac {(b c-a d) (1-\sin (e+f x))}{(a+b) (c+d \sin (e+f x))}} \sqrt {-\frac {(b c-a d) (\sin (e+f x)+1)}{(a-b) (c+d \sin (e+f x))}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c+d} \sqrt {a+b \sin (e+f x)}}{\sqrt {a+b} \sqrt {c+d \sin (e+f x)}}\right ),\frac {(a+b) (c-d)}{(a-b) (c+d)}\right )}{f (c-d) \sqrt {c+d} (b c-a d)}}{\left (a^2-b^2\right ) (b c-a d)}+\frac {2 b^2 \cos (e+f x)}{f \left (a^2-b^2\right ) (b c-a d) \sqrt {a+b \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\)

\(\Big \downarrow \) 3475

\(\displaystyle \frac {\frac {2 (a-b) \sqrt {a+b} (-a d+b c-2 b d) \sec (e+f x) (c+d \sin (e+f x)) \sqrt {\frac {(b c-a d) (1-\sin (e+f x))}{(a+b) (c+d \sin (e+f x))}} \sqrt {-\frac {(b c-a d) (\sin (e+f x)+1)}{(a-b) (c+d \sin (e+f x))}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c+d} \sqrt {a+b \sin (e+f x)}}{\sqrt {a+b} \sqrt {c+d \sin (e+f x)}}\right ),\frac {(a+b) (c-d)}{(a-b) (c+d)}\right )}{f (c-d) \sqrt {c+d} (b c-a d)}-\frac {2 (a-b) \sqrt {a+b} \left (a^2 d^2+b^2 \left (c^2-2 d^2\right )\right ) \sec (e+f x) (c+d \sin (e+f x)) \sqrt {\frac {(b c-a d) (1-\sin (e+f x))}{(a+b) (c+d \sin (e+f x))}} \sqrt {-\frac {(b c-a d) (\sin (e+f x)+1)}{(a-b) (c+d \sin (e+f x))}} E\left (\arcsin \left (\frac {\sqrt {c+d} \sqrt {a+b \sin (e+f x)}}{\sqrt {a+b} \sqrt {c+d \sin (e+f x)}}\right )|\frac {(a+b) (c-d)}{(a-b) (c+d)}\right )}{f (c-d) \sqrt {c+d} (b c-a d)^2}}{\left (a^2-b^2\right ) (b c-a d)}+\frac {2 b^2 \cos (e+f x)}{f \left (a^2-b^2\right ) (b c-a d) \sqrt {a+b \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\)

Input:

Int[1/((a + b*Sin[e + f*x])^(3/2)*(c + d*Sin[e + f*x])^(3/2)),x]
 

Output:

(2*b^2*Cos[e + f*x])/((a^2 - b^2)*(b*c - a*d)*f*Sqrt[a + b*Sin[e + f*x]]*S 
qrt[c + d*Sin[e + f*x]]) + ((-2*(a - b)*Sqrt[a + b]*(a^2*d^2 + b^2*(c^2 - 
2*d^2))*EllipticE[ArcSin[(Sqrt[c + d]*Sqrt[a + b*Sin[e + f*x]])/(Sqrt[a + 
b]*Sqrt[c + d*Sin[e + f*x]])], ((a + b)*(c - d))/((a - b)*(c + d))]*Sec[e 
+ f*x]*Sqrt[((b*c - a*d)*(1 - Sin[e + f*x]))/((a + b)*(c + d*Sin[e + f*x]) 
)]*Sqrt[-(((b*c - a*d)*(1 + Sin[e + f*x]))/((a - b)*(c + d*Sin[e + f*x]))) 
]*(c + d*Sin[e + f*x]))/((c - d)*Sqrt[c + d]*(b*c - a*d)^2*f) + (2*(a - b) 
*Sqrt[a + b]*(b*c - a*d - 2*b*d)*EllipticF[ArcSin[(Sqrt[c + d]*Sqrt[a + b* 
Sin[e + f*x]])/(Sqrt[a + b]*Sqrt[c + d*Sin[e + f*x]])], ((a + b)*(c - d))/ 
((a - b)*(c + d))]*Sec[e + f*x]*Sqrt[((b*c - a*d)*(1 - Sin[e + f*x]))/((a 
+ b)*(c + d*Sin[e + f*x]))]*Sqrt[-(((b*c - a*d)*(1 + Sin[e + f*x]))/((a - 
b)*(c + d*Sin[e + f*x])))]*(c + d*Sin[e + f*x]))/((c - d)*Sqrt[c + d]*(b*c 
 - a*d)*f))/((a^2 - b^2)*(b*c - a*d))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3281
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2 
))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n 
 + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n + 3)*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2* 
n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))
 

rule 3297
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_ 
.) + (f_.)*(x_)]]), x_Symbol] :> Simp[2*((c + d*Sin[e + f*x])/(f*(b*c - a*d 
)*Rt[(c + d)/(a + b), 2]*Cos[e + f*x]))*Sqrt[(b*c - a*d)*((1 - Sin[e + f*x] 
)/((a + b)*(c + d*Sin[e + f*x])))]*Sqrt[(-(b*c - a*d))*((1 + Sin[e + f*x])/ 
((a - b)*(c + d*Sin[e + f*x])))]*EllipticF[ArcSin[Rt[(c + d)/(a + b), 2]*(S 
qrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]])], (a + b)*((c - d)/((a - 
b)*(c + d)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && N 
eQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/(a + b)]
 

rule 3475
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_) + (b_.)*sin[(e_.) + (f_.) 
*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Sim 
p[-2*A*(c - d)*((a + b*Sin[e + f*x])/(f*(b*c - a*d)^2*Rt[(a + b)/(c + d), 2 
]*Cos[e + f*x]))*Sqrt[(b*c - a*d)*((1 + Sin[e + f*x])/((c - d)*(a + b*Sin[e 
 + f*x])))]*Sqrt[(-(b*c - a*d))*((1 - Sin[e + f*x])/((c + d)*(a + b*Sin[e + 
 f*x])))]*EllipticE[ArcSin[Rt[(a + b)/(c + d), 2]*(Sqrt[c + d*Sin[e + f*x]] 
/Sqrt[a + b*Sin[e + f*x]])], (a - b)*((c + d)/((a + b)*(c - d)))], x] /; Fr 
eeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] 
&& NeQ[c^2 - d^2, 0] && EqQ[A, B] && PosQ[(a + b)/(c + d)]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(107308\) vs. \(2(461)=922\).

Time = 14.81 (sec) , antiderivative size = 107309, normalized size of antiderivative = 216.79

method result size
default \(\text {Expression too large to display}\) \(107309\)

Input:

int(1/(a+b*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e))^(3/2),x,method=_RETURNVERBOS 
E)
 

Output:

result too large to display
 

Fricas [F]

\[ \int \frac {1}{(a+b \sin (e+f x))^{3/2} (c+d \sin (e+f x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (d \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+b*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e))^(3/2),x, algorithm="fr 
icas")
 

Output:

integral(sqrt(b*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)/(b^2*d^2*cos(f* 
x + e)^4 + 4*a*b*c*d + (a^2 + b^2)*c^2 + (a^2 + b^2)*d^2 - (b^2*c^2 + 4*a* 
b*c*d + (a^2 + 2*b^2)*d^2)*cos(f*x + e)^2 + 2*(a*b*c^2 + a*b*d^2 + (a^2 + 
b^2)*c*d - (b^2*c*d + a*b*d^2)*cos(f*x + e)^2)*sin(f*x + e)), x)
 

Sympy [F]

\[ \int \frac {1}{(a+b \sin (e+f x))^{3/2} (c+d \sin (e+f x))^{3/2}} \, dx=\int \frac {1}{\left (a + b \sin {\left (e + f x \right )}\right )^{\frac {3}{2}} \left (c + d \sin {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/(a+b*sin(f*x+e))**(3/2)/(c+d*sin(f*x+e))**(3/2),x)
 

Output:

Integral(1/((a + b*sin(e + f*x))**(3/2)*(c + d*sin(e + f*x))**(3/2)), x)
 

Maxima [F]

\[ \int \frac {1}{(a+b \sin (e+f x))^{3/2} (c+d \sin (e+f x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (d \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+b*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e))^(3/2),x, algorithm="ma 
xima")
 

Output:

integrate(1/((b*sin(f*x + e) + a)^(3/2)*(d*sin(f*x + e) + c)^(3/2)), x)
 

Giac [F]

\[ \int \frac {1}{(a+b \sin (e+f x))^{3/2} (c+d \sin (e+f x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (d \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+b*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e))^(3/2),x, algorithm="gi 
ac")
 

Output:

integrate(1/((b*sin(f*x + e) + a)^(3/2)*(d*sin(f*x + e) + c)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \sin (e+f x))^{3/2} (c+d \sin (e+f x))^{3/2}} \, dx=\int \frac {1}{{\left (a+b\,\sin \left (e+f\,x\right )\right )}^{3/2}\,{\left (c+d\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \] Input:

int(1/((a + b*sin(e + f*x))^(3/2)*(c + d*sin(e + f*x))^(3/2)),x)
 

Output:

int(1/((a + b*sin(e + f*x))^(3/2)*(c + d*sin(e + f*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{(a+b \sin (e+f x))^{3/2} (c+d \sin (e+f x))^{3/2}} \, dx=\int \frac {\sqrt {\sin \left (f x +e \right ) d +c}\, \sqrt {\sin \left (f x +e \right ) b +a}}{\sin \left (f x +e \right )^{4} b^{2} d^{2}+2 \sin \left (f x +e \right )^{3} a b \,d^{2}+2 \sin \left (f x +e \right )^{3} b^{2} c d +\sin \left (f x +e \right )^{2} a^{2} d^{2}+4 \sin \left (f x +e \right )^{2} a b c d +\sin \left (f x +e \right )^{2} b^{2} c^{2}+2 \sin \left (f x +e \right ) a^{2} c d +2 \sin \left (f x +e \right ) a b \,c^{2}+a^{2} c^{2}}d x \] Input:

int(1/(a+b*sin(f*x+e))^(3/2)/(c+d*sin(f*x+e))^(3/2),x)
 

Output:

int((sqrt(sin(e + f*x)*d + c)*sqrt(sin(e + f*x)*b + a))/(sin(e + f*x)**4*b 
**2*d**2 + 2*sin(e + f*x)**3*a*b*d**2 + 2*sin(e + f*x)**3*b**2*c*d + sin(e 
 + f*x)**2*a**2*d**2 + 4*sin(e + f*x)**2*a*b*c*d + sin(e + f*x)**2*b**2*c* 
*2 + 2*sin(e + f*x)*a**2*c*d + 2*sin(e + f*x)*a*b*c**2 + a**2*c**2),x)