\(\int \frac {\csc ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx\) [66]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 109 \[ \int \frac {\csc ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {a} d}-\frac {\cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}} \] Output:

arctanh(a^(1/2)*cos(d*x+c)/(a+a*sin(d*x+c))^(1/2))/a^(1/2)/d-2^(1/2)*arcta 
nh(1/2*a^(1/2)*cos(d*x+c)*2^(1/2)/(a+a*sin(d*x+c))^(1/2))/a^(1/2)/d-cot(d* 
x+c)/d/(a+a*sin(d*x+c))^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.75 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.54 \[ \int \frac {\csc ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right ) \left ((8+8 i) (-1)^{3/4} \text {arctanh}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (c+d x)\right )\right )\right )-\cot \left (\frac {1}{4} (c+d x)\right )+2 \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-2 \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \sec \left (\frac {1}{2} (c+d x)\right )-\tan \left (\frac {1}{4} (c+d x)\right )\right )}{4 d \sqrt {a (1+\sin (c+d x))}} \] Input:

Integrate[Csc[c + d*x]^2/Sqrt[a + a*Sin[c + d*x]],x]
 

Output:

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])*((8 + 8*I)*(-1)^(3/4)*ArcTanh[(1/2 
+ I/2)*(-1)^(3/4)*(-1 + Tan[(c + d*x)/4])] - Cot[(c + d*x)/4] + 2*Log[1 + 
Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - 2*Log[1 - Cos[(c + d*x)/2] + Sin[(c 
 + d*x)/2]] + 2*Sec[(c + d*x)/2] - Tan[(c + d*x)/4]))/(4*d*Sqrt[a*(1 + Sin 
[c + d*x])])
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.08, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3042, 3258, 3042, 3464, 3042, 3128, 219, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc ^2(c+d x)}{\sqrt {a \sin (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (c+d x)^2 \sqrt {a \sin (c+d x)+a}}dx\)

\(\Big \downarrow \) 3258

\(\displaystyle -\frac {\int \frac {\csc (c+d x) (a-a \sin (c+d x))}{\sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {a-a \sin (c+d x)}{\sin (c+d x) \sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3464

\(\displaystyle -\frac {\int \csc (c+d x) \sqrt {\sin (c+d x) a+a}dx-2 a \int \frac {1}{\sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx-2 a \int \frac {1}{\sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3128

\(\displaystyle -\frac {\frac {4 a \int \frac {1}{2 a-\frac {a^2 \cos ^2(c+d x)}{\sin (c+d x) a+a}}d\frac {a \cos (c+d x)}{\sqrt {\sin (c+d x) a+a}}}{d}+\int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx+\frac {2 \sqrt {2} \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{d}}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3252

\(\displaystyle -\frac {\frac {2 \sqrt {2} \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{d}-\frac {2 a \int \frac {1}{a-\frac {a^2 \cos ^2(c+d x)}{\sin (c+d x) a+a}}d\frac {a \cos (c+d x)}{\sqrt {\sin (c+d x) a+a}}}{d}}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {2 \sqrt {2} \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{d}-\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{d}}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\)

Input:

Int[Csc[c + d*x]^2/Sqrt[a + a*Sin[c + d*x]],x]
 

Output:

-1/2*((-2*Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]] 
)/d + (2*Sqrt[2]*Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + 
a*Sin[c + d*x]])])/d)/a - Cot[c + d*x]/(d*Sqrt[a + a*Sin[c + d*x]])
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3258
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_. 
) + (f_.)*(x_)]], x_Symbol] :> Simp[(-d)*Cos[e + f*x]*((c + d*Sin[e + f*x]) 
^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] - Simp[1/(2* 
b*(n + 1)*(c^2 - d^2))   Int[(c + d*Sin[e + f*x])^(n + 1)*(Simp[a*d - 2*b*c 
*(n + 1) + b*d*(2*n + 3)*Sin[e + f*x], x]/Sqrt[a + b*Sin[e + f*x]]), x], x] 
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] 
&& NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
 

rule 3464
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A 
*b - a*B)/(b*c - a*d)   Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[(B*c 
- A*d)/(b*c - a*d)   Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], 
 x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [A] (verified)

Time = 0.34 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.22

method result size
default \(-\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (\sin \left (d x +c \right ) a^{3} \left (\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )-\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}}{\sqrt {a}}\right )\right )+\sqrt {a -a \sin \left (d x +c \right )}\, a^{\frac {5}{2}}\right )}{a^{\frac {7}{2}} \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(133\)

Input:

int(csc(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)/a^(7/2)*(sin(d*x+c)*a^3*(2^(1/2) 
*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))-arctanh((a-a*sin(d*x+ 
c))^(1/2)/a^(1/2)))+(a-a*sin(d*x+c))^(1/2)*a^(5/2))/sin(d*x+c)/cos(d*x+c)/ 
(a+a*sin(d*x+c))^(1/2)/d
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 412 vs. \(2 (92) = 184\).

Time = 0.14 (sec) , antiderivative size = 412, normalized size of antiderivative = 3.78 \[ \int \frac {\csc ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\frac {{\left (\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right ) - 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + \frac {2 \, \sqrt {2} {\left (a \cos \left (d x + c\right )^{2} - {\left (a \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) - a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) - \frac {2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (d x + c\right ) + 2}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right )}{\sqrt {a}} + 4 \, \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{4 \, {\left (a d \cos \left (d x + c\right )^{2} - a d - {\left (a d \cos \left (d x + c\right ) + a d\right )} \sin \left (d x + c\right )\right )}} \] Input:

integrate(csc(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

1/4*((cos(d*x + c)^2 - (cos(d*x + c) + 1)*sin(d*x + c) - 1)*sqrt(a)*log((a 
*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 + (cos(d*x + c) + 
 3)*sin(d*x + c) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) - 
9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c) 
- a)/(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) 
- cos(d*x + c) - 1)) + 2*sqrt(2)*(a*cos(d*x + c)^2 - (a*cos(d*x + c) + a)* 
sin(d*x + c) - a)*log(-(cos(d*x + c)^2 - (cos(d*x + c) - 2)*sin(d*x + c) - 
 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(d*x + c) + 1)/sqrt 
(a) + 3*cos(d*x + c) + 2)/(cos(d*x + c)^2 - (cos(d*x + c) + 2)*sin(d*x + c 
) - cos(d*x + c) - 2))/sqrt(a) + 4*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) 
- sin(d*x + c) + 1))/(a*d*cos(d*x + c)^2 - a*d - (a*d*cos(d*x + c) + a*d)* 
sin(d*x + c))
 

Sympy [F]

\[ \int \frac {\csc ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\int \frac {\csc ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )}}\, dx \] Input:

integrate(csc(d*x+c)**2/(a+a*sin(d*x+c))**(1/2),x)
 

Output:

Integral(csc(c + d*x)**2/sqrt(a*(sin(c + d*x) + 1)), x)
 

Maxima [F]

\[ \int \frac {\csc ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\int { \frac {\csc \left (d x + c\right )^{2}}{\sqrt {a \sin \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(csc(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate(csc(d*x + c)^2/sqrt(a*sin(d*x + c) + a), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 217 vs. \(2 (92) = 184\).

Time = 0.17 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.99 \[ \int \frac {\csc ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\frac {\frac {\sqrt {2} \log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {\sqrt {2} \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {\log \left ({\left | \frac {1}{2} \, \sqrt {2} + \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {\log \left ({\left | -\frac {1}{2} \, \sqrt {2} + \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {2 \, \sqrt {2} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} \sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{2 \, d} \] Input:

integrate(csc(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

1/2*(sqrt(2)*log(sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1)/(sqrt(a)*sgn(cos(-1/4 
*pi + 1/2*d*x + 1/2*c))) - sqrt(2)*log(-sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1 
)/(sqrt(a)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - log(abs(1/2*sqrt(2) + si 
n(-1/4*pi + 1/2*d*x + 1/2*c)))/(sqrt(a)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c) 
)) + log(abs(-1/2*sqrt(2) + sin(-1/4*pi + 1/2*d*x + 1/2*c)))/(sqrt(a)*sgn( 
cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 2*sqrt(2)*sin(-1/4*pi + 1/2*d*x + 1/2*c 
)/((2*sin(-1/4*pi + 1/2*d*x + 1/2*c)^2 - 1)*sqrt(a)*sgn(cos(-1/4*pi + 1/2* 
d*x + 1/2*c))))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\csc ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\int \frac {1}{{\sin \left (c+d\,x\right )}^2\,\sqrt {a+a\,\sin \left (c+d\,x\right )}} \,d x \] Input:

int(1/(sin(c + d*x)^2*(a + a*sin(c + d*x))^(1/2)),x)
 

Output:

int(1/(sin(c + d*x)^2*(a + a*sin(c + d*x))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {\csc ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sin \left (d x +c \right )+1}\, \csc \left (d x +c \right )^{2}}{\sin \left (d x +c \right )+1}d x \right )}{a} \] Input:

int(csc(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*int((sqrt(sin(c + d*x) + 1)*csc(c + d*x)**2)/(sin(c + d*x) + 1),x 
))/a