\(\int \cos ^4(c+d x) \sin ^2(c+d x) (a+b \sin (c+d x)) \, dx\) [1090]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 103 \[ \int \cos ^4(c+d x) \sin ^2(c+d x) (a+b \sin (c+d x)) \, dx=\frac {a x}{16}-\frac {b \cos ^5(c+d x)}{5 d}+\frac {b \cos ^7(c+d x)}{7 d}+\frac {a \cos (c+d x) \sin (c+d x)}{16 d}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{24 d}-\frac {a \cos ^5(c+d x) \sin (c+d x)}{6 d} \] Output:

1/16*a*x-1/5*b*cos(d*x+c)^5/d+1/7*b*cos(d*x+c)^7/d+1/16*a*cos(d*x+c)*sin(d 
*x+c)/d+1/24*a*cos(d*x+c)^3*sin(d*x+c)/d-1/6*a*cos(d*x+c)^5*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.85 \[ \int \cos ^4(c+d x) \sin ^2(c+d x) (a+b \sin (c+d x)) \, dx=\frac {420 a d x-315 b \cos (c+d x)-105 b \cos (3 (c+d x))+21 b \cos (5 (c+d x))+15 b \cos (7 (c+d x))+105 a \sin (2 (c+d x))-105 a \sin (4 (c+d x))-35 a \sin (6 (c+d x))}{6720 d} \] Input:

Integrate[Cos[c + d*x]^4*Sin[c + d*x]^2*(a + b*Sin[c + d*x]),x]
 

Output:

(420*a*d*x - 315*b*Cos[c + d*x] - 105*b*Cos[3*(c + d*x)] + 21*b*Cos[5*(c + 
 d*x)] + 15*b*Cos[7*(c + d*x)] + 105*a*Sin[2*(c + d*x)] - 105*a*Sin[4*(c + 
 d*x)] - 35*a*Sin[6*(c + d*x)])/(6720*d)
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.08, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.444, Rules used = {3042, 3317, 3042, 3045, 244, 2009, 3048, 3042, 3115, 3042, 3115, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin ^2(c+d x) \cos ^4(c+d x) (a+b \sin (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin (c+d x)^2 \cos (c+d x)^4 (a+b \sin (c+d x))dx\)

\(\Big \downarrow \) 3317

\(\displaystyle a \int \cos ^4(c+d x) \sin ^2(c+d x)dx+b \int \cos ^4(c+d x) \sin ^3(c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \cos (c+d x)^4 \sin (c+d x)^2dx+b \int \cos (c+d x)^4 \sin (c+d x)^3dx\)

\(\Big \downarrow \) 3045

\(\displaystyle a \int \cos (c+d x)^4 \sin (c+d x)^2dx-\frac {b \int \cos ^4(c+d x) \left (1-\cos ^2(c+d x)\right )d\cos (c+d x)}{d}\)

\(\Big \downarrow \) 244

\(\displaystyle a \int \cos (c+d x)^4 \sin (c+d x)^2dx-\frac {b \int \left (\cos ^4(c+d x)-\cos ^6(c+d x)\right )d\cos (c+d x)}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle a \int \cos (c+d x)^4 \sin (c+d x)^2dx-\frac {b \left (\frac {1}{5} \cos ^5(c+d x)-\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 3048

\(\displaystyle a \left (\frac {1}{6} \int \cos ^4(c+d x)dx-\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {b \left (\frac {1}{5} \cos ^5(c+d x)-\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {1}{6} \int \sin \left (c+d x+\frac {\pi }{2}\right )^4dx-\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {b \left (\frac {1}{5} \cos ^5(c+d x)-\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 3115

\(\displaystyle a \left (\frac {1}{6} \left (\frac {3}{4} \int \cos ^2(c+d x)dx+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )-\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {b \left (\frac {1}{5} \cos ^5(c+d x)-\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {1}{6} \left (\frac {3}{4} \int \sin \left (c+d x+\frac {\pi }{2}\right )^2dx+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )-\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {b \left (\frac {1}{5} \cos ^5(c+d x)-\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 3115

\(\displaystyle a \left (\frac {1}{6} \left (\frac {3}{4} \left (\frac {\int 1dx}{2}+\frac {\sin (c+d x) \cos (c+d x)}{2 d}\right )+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )-\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {b \left (\frac {1}{5} \cos ^5(c+d x)-\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 24

\(\displaystyle a \left (\frac {1}{6} \left (\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}+\frac {3}{4} \left (\frac {\sin (c+d x) \cos (c+d x)}{2 d}+\frac {x}{2}\right )\right )-\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {b \left (\frac {1}{5} \cos ^5(c+d x)-\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

Input:

Int[Cos[c + d*x]^4*Sin[c + d*x]^2*(a + b*Sin[c + d*x]),x]
 

Output:

-((b*(Cos[c + d*x]^5/5 - Cos[c + d*x]^7/7))/d) + a*(-1/6*(Cos[c + d*x]^5*S 
in[c + d*x])/d + ((Cos[c + d*x]^3*Sin[c + d*x])/(4*d) + (3*(x/2 + (Cos[c + 
 d*x]*Sin[c + d*x])/(2*d)))/4)/6)
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 244
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand 
Integrand[(c*x)^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p 
, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3045
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_ 
Symbol] :> Simp[-(a*f)^(-1)   Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], 
x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] && 
 !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])
 

rule 3048
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[(-a)*(b*Cos[e + f*x])^(n + 1)*((a*Sin[e + f*x])^(m - 
1)/(b*f*(m + n))), x] + Simp[a^2*((m - 1)/(m + n))   Int[(b*Cos[e + f*x])^n 
*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] 
 && NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3317
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a   Int[(g*Co 
s[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Simp[b/d   Int[(g*Cos[e + f*x])^ 
p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]
 
Maple [A] (verified)

Time = 17.37 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.85

method result size
derivativedivides \(\frac {a \left (-\frac {\sin \left (d x +c \right ) \cos \left (d x +c \right )^{5}}{6}+\frac {\left (\cos \left (d x +c \right )^{3}+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{24}+\frac {d x}{16}+\frac {c}{16}\right )+b \left (-\frac {\sin \left (d x +c \right )^{2} \cos \left (d x +c \right )^{5}}{7}-\frac {2 \cos \left (d x +c \right )^{5}}{35}\right )}{d}\) \(88\)
default \(\frac {a \left (-\frac {\sin \left (d x +c \right ) \cos \left (d x +c \right )^{5}}{6}+\frac {\left (\cos \left (d x +c \right )^{3}+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{24}+\frac {d x}{16}+\frac {c}{16}\right )+b \left (-\frac {\sin \left (d x +c \right )^{2} \cos \left (d x +c \right )^{5}}{7}-\frac {2 \cos \left (d x +c \right )^{5}}{35}\right )}{d}\) \(88\)
parallelrisch \(\frac {420 a x d -105 b \cos \left (3 d x +3 c \right )+15 b \cos \left (7 d x +7 c \right )-35 a \sin \left (6 d x +6 c \right )+21 b \cos \left (5 d x +5 c \right )-105 a \sin \left (4 d x +4 c \right )+105 a \sin \left (2 d x +2 c \right )-315 b \cos \left (d x +c \right )-384 b}{6720 d}\) \(96\)
risch \(\frac {a x}{16}-\frac {3 b \cos \left (d x +c \right )}{64 d}+\frac {b \cos \left (7 d x +7 c \right )}{448 d}-\frac {a \sin \left (6 d x +6 c \right )}{192 d}+\frac {b \cos \left (5 d x +5 c \right )}{320 d}-\frac {a \sin \left (4 d x +4 c \right )}{64 d}-\frac {b \cos \left (3 d x +3 c \right )}{64 d}+\frac {a \sin \left (2 d x +2 c \right )}{64 d}\) \(108\)
norman \(\frac {\frac {4 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{d}+\frac {a x}{16}-\frac {4 b}{35 d}-\frac {a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d}+\frac {11 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{6 d}-\frac {31 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{24 d}+\frac {31 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{24 d}-\frac {11 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{6 d}+\frac {a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{13}}{8 d}+\frac {7 a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{16}+\frac {21 a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{16}+\frac {35 a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{16}+\frac {35 a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{16}+\frac {21 a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{16}+\frac {7 a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{16}+\frac {a x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{14}}{16}-\frac {4 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{5 d}-\frac {8 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{d}-\frac {4 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{d}+\frac {8 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{5 d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{7}}\) \(318\)
orering \(\text {Expression too large to display}\) \(2407\)

Input:

int(cos(d*x+c)^4*sin(d*x+c)^2*(a+b*sin(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

1/d*(a*(-1/6*sin(d*x+c)*cos(d*x+c)^5+1/24*(cos(d*x+c)^3+3/2*cos(d*x+c))*si 
n(d*x+c)+1/16*d*x+1/16*c)+b*(-1/7*sin(d*x+c)^2*cos(d*x+c)^5-2/35*cos(d*x+c 
)^5))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.71 \[ \int \cos ^4(c+d x) \sin ^2(c+d x) (a+b \sin (c+d x)) \, dx=\frac {240 \, b \cos \left (d x + c\right )^{7} - 336 \, b \cos \left (d x + c\right )^{5} + 105 \, a d x - 35 \, {\left (8 \, a \cos \left (d x + c\right )^{5} - 2 \, a \cos \left (d x + c\right )^{3} - 3 \, a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{1680 \, d} \] Input:

integrate(cos(d*x+c)^4*sin(d*x+c)^2*(a+b*sin(d*x+c)),x, algorithm="fricas" 
)
 

Output:

1/1680*(240*b*cos(d*x + c)^7 - 336*b*cos(d*x + c)^5 + 105*a*d*x - 35*(8*a* 
cos(d*x + c)^5 - 2*a*cos(d*x + c)^3 - 3*a*cos(d*x + c))*sin(d*x + c))/d
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 192 vs. \(2 (90) = 180\).

Time = 0.51 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.86 \[ \int \cos ^4(c+d x) \sin ^2(c+d x) (a+b \sin (c+d x)) \, dx=\begin {cases} \frac {a x \sin ^{6}{\left (c + d x \right )}}{16} + \frac {3 a x \sin ^{4}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{16} + \frac {3 a x \sin ^{2}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{16} + \frac {a x \cos ^{6}{\left (c + d x \right )}}{16} + \frac {a \sin ^{5}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{16 d} + \frac {a \sin ^{3}{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{6 d} - \frac {a \sin {\left (c + d x \right )} \cos ^{5}{\left (c + d x \right )}}{16 d} - \frac {b \sin ^{2}{\left (c + d x \right )} \cos ^{5}{\left (c + d x \right )}}{5 d} - \frac {2 b \cos ^{7}{\left (c + d x \right )}}{35 d} & \text {for}\: d \neq 0 \\x \left (a + b \sin {\left (c \right )}\right ) \sin ^{2}{\left (c \right )} \cos ^{4}{\left (c \right )} & \text {otherwise} \end {cases} \] Input:

integrate(cos(d*x+c)**4*sin(d*x+c)**2*(a+b*sin(d*x+c)),x)
 

Output:

Piecewise((a*x*sin(c + d*x)**6/16 + 3*a*x*sin(c + d*x)**4*cos(c + d*x)**2/ 
16 + 3*a*x*sin(c + d*x)**2*cos(c + d*x)**4/16 + a*x*cos(c + d*x)**6/16 + a 
*sin(c + d*x)**5*cos(c + d*x)/(16*d) + a*sin(c + d*x)**3*cos(c + d*x)**3/( 
6*d) - a*sin(c + d*x)*cos(c + d*x)**5/(16*d) - b*sin(c + d*x)**2*cos(c + d 
*x)**5/(5*d) - 2*b*cos(c + d*x)**7/(35*d), Ne(d, 0)), (x*(a + b*sin(c))*si 
n(c)**2*cos(c)**4, True))
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.63 \[ \int \cos ^4(c+d x) \sin ^2(c+d x) (a+b \sin (c+d x)) \, dx=\frac {35 \, {\left (4 \, \sin \left (2 \, d x + 2 \, c\right )^{3} + 12 \, d x + 12 \, c - 3 \, \sin \left (4 \, d x + 4 \, c\right )\right )} a + 192 \, {\left (5 \, \cos \left (d x + c\right )^{7} - 7 \, \cos \left (d x + c\right )^{5}\right )} b}{6720 \, d} \] Input:

integrate(cos(d*x+c)^4*sin(d*x+c)^2*(a+b*sin(d*x+c)),x, algorithm="maxima" 
)
 

Output:

1/6720*(35*(4*sin(2*d*x + 2*c)^3 + 12*d*x + 12*c - 3*sin(4*d*x + 4*c))*a + 
 192*(5*cos(d*x + c)^7 - 7*cos(d*x + c)^5)*b)/d
 

Giac [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.04 \[ \int \cos ^4(c+d x) \sin ^2(c+d x) (a+b \sin (c+d x)) \, dx=\frac {1}{16} \, a x + \frac {b \cos \left (7 \, d x + 7 \, c\right )}{448 \, d} + \frac {b \cos \left (5 \, d x + 5 \, c\right )}{320 \, d} - \frac {b \cos \left (3 \, d x + 3 \, c\right )}{64 \, d} - \frac {3 \, b \cos \left (d x + c\right )}{64 \, d} - \frac {a \sin \left (6 \, d x + 6 \, c\right )}{192 \, d} - \frac {a \sin \left (4 \, d x + 4 \, c\right )}{64 \, d} + \frac {a \sin \left (2 \, d x + 2 \, c\right )}{64 \, d} \] Input:

integrate(cos(d*x+c)^4*sin(d*x+c)^2*(a+b*sin(d*x+c)),x, algorithm="giac")
 

Output:

1/16*a*x + 1/448*b*cos(7*d*x + 7*c)/d + 1/320*b*cos(5*d*x + 5*c)/d - 1/64* 
b*cos(3*d*x + 3*c)/d - 3/64*b*cos(d*x + c)/d - 1/192*a*sin(6*d*x + 6*c)/d 
- 1/64*a*sin(4*d*x + 4*c)/d + 1/64*a*sin(2*d*x + 2*c)/d
 

Mupad [B] (verification not implemented)

Time = 37.81 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.76 \[ \int \cos ^4(c+d x) \sin ^2(c+d x) (a+b \sin (c+d x)) \, dx=\frac {a\,x}{16}-\frac {-\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}}{8}+\frac {11\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}}{6}+4\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}-\frac {31\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{24}-4\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+8\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+\frac {31\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{24}-\frac {8\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{5}-\frac {11\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{6}+\frac {4\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{5}+\frac {a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8}+\frac {4\,b}{35}}{d\,{\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}^7} \] Input:

int(cos(c + d*x)^4*sin(c + d*x)^2*(a + b*sin(c + d*x)),x)
 

Output:

(a*x)/16 - ((4*b)/35 + (a*tan(c/2 + (d*x)/2))/8 - (11*a*tan(c/2 + (d*x)/2) 
^3)/6 + (31*a*tan(c/2 + (d*x)/2)^5)/24 - (31*a*tan(c/2 + (d*x)/2)^9)/24 + 
(11*a*tan(c/2 + (d*x)/2)^11)/6 - (a*tan(c/2 + (d*x)/2)^13)/8 + (4*b*tan(c/ 
2 + (d*x)/2)^2)/5 - (8*b*tan(c/2 + (d*x)/2)^4)/5 + 8*b*tan(c/2 + (d*x)/2)^ 
6 - 4*b*tan(c/2 + (d*x)/2)^8 + 4*b*tan(c/2 + (d*x)/2)^10)/(d*(tan(c/2 + (d 
*x)/2)^2 + 1)^7)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.19 \[ \int \cos ^4(c+d x) \sin ^2(c+d x) (a+b \sin (c+d x)) \, dx=\frac {-240 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{6} b -280 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{5} a +384 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{4} b +490 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} a -48 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} b -105 \cos \left (d x +c \right ) \sin \left (d x +c \right ) a -96 \cos \left (d x +c \right ) b +105 a d x +96 b}{1680 d} \] Input:

int(cos(d*x+c)^4*sin(d*x+c)^2*(a+b*sin(d*x+c)),x)
 

Output:

( - 240*cos(c + d*x)*sin(c + d*x)**6*b - 280*cos(c + d*x)*sin(c + d*x)**5* 
a + 384*cos(c + d*x)*sin(c + d*x)**4*b + 490*cos(c + d*x)*sin(c + d*x)**3* 
a - 48*cos(c + d*x)*sin(c + d*x)**2*b - 105*cos(c + d*x)*sin(c + d*x)*a - 
96*cos(c + d*x)*b + 105*a*d*x + 96*b)/(1680*d)