\(\int \cos ^2(c+d x) \cot ^2(c+d x) \sqrt {a+b \sin (c+d x)} \, dx\) [1142]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 323 \[ \int \cos ^2(c+d x) \cot ^2(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\frac {\left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{15 a b d}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}-\frac {\left (4 a^2+57 b^2\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{15 b^2 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {a \left (4 a^2+11 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{15 b^2 d \sqrt {a+b \sin (c+d x)}}+\frac {b \operatorname {EllipticPi}\left (2,\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{d \sqrt {a+b \sin (c+d x)}} \] Output:

1/15*(4*a^2+15*b^2)*cos(d*x+c)*(a+b*sin(d*x+c))^(1/2)/a/b/d-2/5*cos(d*x+c) 
*(a+b*sin(d*x+c))^(3/2)/b/d-cot(d*x+c)*(a+b*sin(d*x+c))^(3/2)/a/d+1/15*(4* 
a^2+57*b^2)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*( 
a+b*sin(d*x+c))^(1/2)/b^2/d/((a+b*sin(d*x+c))/(a+b))^(1/2)+1/15*a*(4*a^2+1 
1*b^2)*InverseJacobiAM(1/2*c-1/4*Pi+1/2*d*x,2^(1/2)*(b/(a+b))^(1/2))*((a+b 
*sin(d*x+c))/(a+b))^(1/2)/b^2/d/(a+b*sin(d*x+c))^(1/2)-b*EllipticPi(cos(1/ 
2*c+1/4*Pi+1/2*d*x),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*sin(d*x+c))/(a+b))^(1 
/2)/d/(a+b*sin(d*x+c))^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 4.20 (sec) , antiderivative size = 422, normalized size of antiderivative = 1.31 \[ \int \cos ^2(c+d x) \cot ^2(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\frac {\frac {2 i \left (4 a^2+57 b^2\right ) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right ) \sec (c+d x) \sqrt {-\frac {b (-1+\sin (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sin (c+d x))}{a-b}}}{a b^3 \sqrt {-\frac {1}{a+b}}}+\frac {184 a \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{\sqrt {a+b \sin (c+d x)}}+\frac {2 \left (4 a^2+27 b^2\right ) \operatorname {EllipticPi}\left (2,\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{b \sqrt {a+b \sin (c+d x)}}-\frac {4 \sqrt {a+b \sin (c+d x)} (2 a \cos (c+d x)+3 b (5 \cot (c+d x)+\sin (2 (c+d x))))}{b}}{60 d} \] Input:

Integrate[Cos[c + d*x]^2*Cot[c + d*x]^2*Sqrt[a + b*Sin[c + d*x]],x]
 

Output:

(((2*I)*(4*a^2 + 57*b^2)*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^( 
-1)]*Sqrt[a + b*Sin[c + d*x]]], (a + b)/(a - b)] + b*(-2*a*EllipticF[I*Arc 
Sinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c + d*x]]], (a + b)/(a - b)] + b*E 
llipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c + d*x] 
]], (a + b)/(a - b)]))*Sec[c + d*x]*Sqrt[-((b*(-1 + Sin[c + d*x]))/(a + b) 
)]*Sqrt[-((b*(1 + Sin[c + d*x]))/(a - b))])/(a*b^3*Sqrt[-(a + b)^(-1)]) + 
(184*a*EllipticF[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + 
 d*x])/(a + b)])/Sqrt[a + b*Sin[c + d*x]] + (2*(4*a^2 + 27*b^2)*EllipticPi 
[2, (-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b 
)])/(b*Sqrt[a + b*Sin[c + d*x]]) - (4*Sqrt[a + b*Sin[c + d*x]]*(2*a*Cos[c 
+ d*x] + 3*b*(5*Cot[c + d*x] + Sin[2*(c + d*x)])))/b)/(60*d)
 

Rubi [A] (verified)

Time = 2.47 (sec) , antiderivative size = 338, normalized size of antiderivative = 1.05, number of steps used = 21, number of rules used = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.677, Rules used = {3042, 3373, 27, 3042, 3528, 27, 3042, 3538, 25, 3042, 3134, 3042, 3132, 3481, 3042, 3142, 3042, 3140, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^2(c+d x) \cot ^2(c+d x) \sqrt {a+b \sin (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^4 \sqrt {a+b \sin (c+d x)}}{\sin (c+d x)^2}dx\)

\(\Big \downarrow \) 3373

\(\displaystyle -\frac {2 \int -\frac {1}{4} \csc (c+d x) \sqrt {a+b \sin (c+d x)} \left (5 b^2-14 a \sin (c+d x) b-\left (4 a^2+15 b^2\right ) \sin ^2(c+d x)\right )dx}{5 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \csc (c+d x) \sqrt {a+b \sin (c+d x)} \left (5 b^2-14 a \sin (c+d x) b-\left (4 a^2+15 b^2\right ) \sin ^2(c+d x)\right )dx}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {a+b \sin (c+d x)} \left (5 b^2-14 a \sin (c+d x) b-\left (4 a^2+15 b^2\right ) \sin (c+d x)^2\right )}{\sin (c+d x)}dx}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3528

\(\displaystyle \frac {\frac {2}{3} \int \frac {\csc (c+d x) \left (-46 b \sin (c+d x) a^2+15 b^2 a-\left (4 a^2+57 b^2\right ) \sin ^2(c+d x) a\right )}{2 \sqrt {a+b \sin (c+d x)}}dx+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{3} \int \frac {\csc (c+d x) \left (-46 b \sin (c+d x) a^2+15 b^2 a-\left (4 a^2+57 b^2\right ) \sin ^2(c+d x) a\right )}{\sqrt {a+b \sin (c+d x)}}dx+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \int \frac {-46 b \sin (c+d x) a^2+15 b^2 a-\left (4 a^2+57 b^2\right ) \sin (c+d x)^2 a}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {\frac {1}{3} \left (-\frac {a \left (4 a^2+57 b^2\right ) \int \sqrt {a+b \sin (c+d x)}dx}{b}-\frac {\int -\frac {\csc (c+d x) \left (15 a b^3+a^2 \left (4 a^2+11 b^2\right ) \sin (c+d x)\right )}{\sqrt {a+b \sin (c+d x)}}dx}{b}\right )+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {1}{3} \left (\frac {\int \frac {\csc (c+d x) \left (15 a b^3+a^2 \left (4 a^2+11 b^2\right ) \sin (c+d x)\right )}{\sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {a \left (4 a^2+57 b^2\right ) \int \sqrt {a+b \sin (c+d x)}dx}{b}\right )+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\frac {\int \frac {15 a b^3+a^2 \left (4 a^2+11 b^2\right ) \sin (c+d x)}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {a \left (4 a^2+57 b^2\right ) \int \sqrt {a+b \sin (c+d x)}dx}{b}\right )+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {\frac {1}{3} \left (\frac {\int \frac {15 a b^3+a^2 \left (4 a^2+11 b^2\right ) \sin (c+d x)}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {a \left (4 a^2+57 b^2\right ) \sqrt {a+b \sin (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}dx}{b \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}\right )+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\frac {\int \frac {15 a b^3+a^2 \left (4 a^2+11 b^2\right ) \sin (c+d x)}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {a \left (4 a^2+57 b^2\right ) \sqrt {a+b \sin (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}dx}{b \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}\right )+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {\frac {1}{3} \left (\frac {\int \frac {15 a b^3+a^2 \left (4 a^2+11 b^2\right ) \sin (c+d x)}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {2 a \left (4 a^2+57 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}\right )+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {\frac {1}{3} \left (\frac {a^2 \left (4 a^2+11 b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx+15 a b^3 \int \frac {\csc (c+d x)}{\sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {2 a \left (4 a^2+57 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}\right )+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\frac {a^2 \left (4 a^2+11 b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx+15 a b^3 \int \frac {1}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {2 a \left (4 a^2+57 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}\right )+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {\frac {1}{3} \left (\frac {\frac {a^2 \left (4 a^2+11 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}}dx}{\sqrt {a+b \sin (c+d x)}}+15 a b^3 \int \frac {1}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {2 a \left (4 a^2+57 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}\right )+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\frac {\frac {a^2 \left (4 a^2+11 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}}dx}{\sqrt {a+b \sin (c+d x)}}+15 a b^3 \int \frac {1}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx}{b}-\frac {2 a \left (4 a^2+57 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}\right )+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {\frac {1}{3} \left (\frac {15 a b^3 \int \frac {1}{\sin (c+d x) \sqrt {a+b \sin (c+d x)}}dx+\frac {2 a^2 \left (4 a^2+11 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}}{b}-\frac {2 a \left (4 a^2+57 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}\right )+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3286

\(\displaystyle \frac {\frac {1}{3} \left (\frac {\frac {15 a b^3 \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {\csc (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}}dx}{\sqrt {a+b \sin (c+d x)}}+\frac {2 a^2 \left (4 a^2+11 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}}{b}-\frac {2 a \left (4 a^2+57 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}\right )+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\frac {\frac {15 a b^3 \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {1}{\sin (c+d x) \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}}dx}{\sqrt {a+b \sin (c+d x)}}+\frac {2 a^2 \left (4 a^2+11 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}}{b}-\frac {2 a \left (4 a^2+57 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}\right )+\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {\frac {2 \left (4 a^2+15 b^2\right ) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{3 d}+\frac {1}{3} \left (\frac {\frac {2 a^2 \left (4 a^2+11 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}+\frac {30 a b^3 \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}}{b}-\frac {2 a \left (4 a^2+57 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}\right )}{10 a b}-\frac {2 \cos (c+d x) (a+b \sin (c+d x))^{3/2}}{5 b d}-\frac {\cot (c+d x) (a+b \sin (c+d x))^{3/2}}{a d}\)

Input:

Int[Cos[c + d*x]^2*Cot[c + d*x]^2*Sqrt[a + b*Sin[c + d*x]],x]
 

Output:

(-2*Cos[c + d*x]*(a + b*Sin[c + d*x])^(3/2))/(5*b*d) - (Cot[c + d*x]*(a + 
b*Sin[c + d*x])^(3/2))/(a*d) + ((2*(4*a^2 + 15*b^2)*Cos[c + d*x]*Sqrt[a + 
b*Sin[c + d*x]])/(3*d) + ((-2*a*(4*a^2 + 57*b^2)*EllipticE[(c - Pi/2 + d*x 
)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(b*d*Sqrt[(a + b*Sin[c + d*x 
])/(a + b)]) + ((2*a^2*(4*a^2 + 11*b^2)*EllipticF[(c - Pi/2 + d*x)/2, (2*b 
)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(d*Sqrt[a + b*Sin[c + d*x]] 
) + (30*a*b^3*EllipticPi[2, (c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b 
*Sin[c + d*x])/(a + b)])/(d*Sqrt[a + b*Sin[c + d*x]]))/b)/3)/(10*a*b)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3373
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + 
(b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[Cos[e + f*x]*(a + b* 
Sin[e + f*x])^(m + 1)*((d*Sin[e + f*x])^(n + 1)/(a*d*f*(n + 1))), x] + (-Si 
mp[Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((d*Sin[e + f*x])^(n + 2)/(b*d 
^2*f*(m + n + 4))), x] + Simp[1/(a*b*d*(n + 1)*(m + n + 4))   Int[(a + b*Si 
n[e + f*x])^m*(d*Sin[e + f*x])^(n + 1)*Simp[a^2*(n + 1)*(n + 2) - b^2*(m + 
n + 2)*(m + n + 4) + a*b*(m + 3)*Sin[e + f*x] - (a^2*(n + 1)*(n + 3) - b^2* 
(m + n + 3)*(m + n + 4))*Sin[e + f*x]^2, x], x], x]) /; FreeQ[{a, b, d, e, 
f, m}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n]) &&  ! 
m < -1 && LtQ[n, -1] && NeQ[m + n + 4, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3528
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x 
])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(d*(m + 
n + 2))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A* 
d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2) - C*(a 
*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + 
 n + 2))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n} 
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[ 
m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(655\) vs. \(2(306)=612\).

Time = 1.65 (sec) , antiderivative size = 656, normalized size of antiderivative = 2.03

method result size
default \(-\frac {-6 a \,b^{4} \cos \left (d x +c \right )^{4} \sin \left (d x +c \right )-8 a^{2} b^{3} \cos \left (d x +c \right )^{4}+\left (2 a^{3} b^{2}+21 a \,b^{4}\right ) \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )+23 a^{2} b^{3} \cos \left (d x +c \right )^{2}+\sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, \sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \left (15 \operatorname {EllipticPi}\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \frac {a -b}{a}, \sqrt {\frac {a -b}{a +b}}\right ) a \,b^{4}-15 \operatorname {EllipticPi}\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \frac {a -b}{a}, \sqrt {\frac {a -b}{a +b}}\right ) b^{5}+4 \operatorname {EllipticF}\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{4} b +42 \operatorname {EllipticF}\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{3} b^{2}+11 \operatorname {EllipticF}\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{2} b^{3}-57 \operatorname {EllipticF}\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a \,b^{4}-4 \operatorname {EllipticE}\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{5}-53 \operatorname {EllipticE}\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{3} b^{2}+57 \operatorname {EllipticE}\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a \,b^{4}\right ) \sin \left (d x +c \right )}{15 a \,b^{3} \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {a +b \sin \left (d x +c \right )}\, d}\) \(656\)

Input:

int(cos(d*x+c)^2*cot(d*x+c)^2*(a+b*sin(d*x+c))^(1/2),x,method=_RETURNVERBO 
SE)
 

Output:

-1/15*(-6*a*b^4*cos(d*x+c)^4*sin(d*x+c)-8*a^2*b^3*cos(d*x+c)^4+(2*a^3*b^2+ 
21*a*b^4)*cos(d*x+c)^2*sin(d*x+c)+23*a^2*b^3*cos(d*x+c)^2+(-b/(a+b)*sin(d* 
x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*(b/(a-b)*sin(d*x+c 
)+a/(a-b))^(1/2)*(15*EllipticPi((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),(a-b)/a 
,((a-b)/(a+b))^(1/2))*a*b^4-15*EllipticPi((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/ 
2),(a-b)/a,((a-b)/(a+b))^(1/2))*b^5+4*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b 
))^(1/2),((a-b)/(a+b))^(1/2))*a^4*b+42*EllipticF((b/(a-b)*sin(d*x+c)+a/(a- 
b))^(1/2),((a-b)/(a+b))^(1/2))*a^3*b^2+11*EllipticF((b/(a-b)*sin(d*x+c)+a/ 
(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^2*b^3-57*EllipticF((b/(a-b)*sin(d*x+c) 
+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a*b^4-4*EllipticE((b/(a-b)*sin(d*x+c) 
+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^5-53*EllipticE((b/(a-b)*sin(d*x+c)+ 
a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^3*b^2+57*EllipticE((b/(a-b)*sin(d*x+ 
c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a*b^4)*sin(d*x+c))/a/b^3/sin(d*x+c) 
/cos(d*x+c)/(a+b*sin(d*x+c))^(1/2)/d
 

Fricas [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) \cot ^2(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)^2*cot(d*x+c)^2*(a+b*sin(d*x+c))^(1/2),x, algorithm="f 
ricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \cos ^2(c+d x) \cot ^2(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\int \sqrt {a + b \sin {\left (c + d x \right )}} \cos ^{2}{\left (c + d x \right )} \cot ^{2}{\left (c + d x \right )}\, dx \] Input:

integrate(cos(d*x+c)**2*cot(d*x+c)**2*(a+b*sin(d*x+c))**(1/2),x)
 

Output:

Integral(sqrt(a + b*sin(c + d*x))*cos(c + d*x)**2*cot(c + d*x)**2, x)
 

Maxima [F]

\[ \int \cos ^2(c+d x) \cot ^2(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\int { \sqrt {b \sin \left (d x + c\right ) + a} \cos \left (d x + c\right )^{2} \cot \left (d x + c\right )^{2} \,d x } \] Input:

integrate(cos(d*x+c)^2*cot(d*x+c)^2*(a+b*sin(d*x+c))^(1/2),x, algorithm="m 
axima")
 

Output:

integrate(sqrt(b*sin(d*x + c) + a)*cos(d*x + c)^2*cot(d*x + c)^2, x)
 

Giac [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) \cot ^2(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)^2*cot(d*x+c)^2*(a+b*sin(d*x+c))^(1/2),x, algorithm="g 
iac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) \cot ^2(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\int {\cos \left (c+d\,x\right )}^2\,{\mathrm {cot}\left (c+d\,x\right )}^2\,\sqrt {a+b\,\sin \left (c+d\,x\right )} \,d x \] Input:

int(cos(c + d*x)^2*cot(c + d*x)^2*(a + b*sin(c + d*x))^(1/2),x)
 

Output:

int(cos(c + d*x)^2*cot(c + d*x)^2*(a + b*sin(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \cos ^2(c+d x) \cot ^2(c+d x) \sqrt {a+b \sin (c+d x)} \, dx=\int \sqrt {\sin \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )^{2} \cot \left (d x +c \right )^{2}d x \] Input:

int(cos(d*x+c)^2*cot(d*x+c)^2*(a+b*sin(d*x+c))^(1/2),x)
 

Output:

int(sqrt(sin(c + d*x)*b + a)*cos(c + d*x)**2*cot(c + d*x)**2,x)