\(\int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{7/2}} \, dx\) [95]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 42, antiderivative size = 237 \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {4 a (g \cos (e+f x))^{5/2}}{9 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}-\frac {2 a (g \cos (e+f x))^{5/2}}{15 c f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}-\frac {2 a (g \cos (e+f x))^{5/2}}{15 c^2 f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {2 a g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{15 c^3 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \] Output:

4/9*a*(g*cos(f*x+e))^(5/2)/f/g/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(7/ 
2)-2/15*a*(g*cos(f*x+e))^(5/2)/c/f/g/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e 
))^(5/2)-2/15*a*(g*cos(f*x+e))^(5/2)/c^2/f/g/(a+a*sin(f*x+e))^(1/2)/(c-c*s 
in(f*x+e))^(3/2)+2/15*a*g*cos(f*x+e)^(1/2)*(g*cos(f*x+e))^(1/2)*EllipticE( 
sin(1/2*f*x+1/2*e),2^(1/2))/c^3/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^ 
(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.83 (sec) , antiderivative size = 256, normalized size of antiderivative = 1.08 \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {4 e^{3 i (e+f x)} \left (e^{-i (e+f x)} \left (1+e^{2 i (e+f x)}\right ) g\right )^{3/2} \left (\sqrt {1+e^{2 i (e+f x)}} \left (-29 i+e^{i (e+f x)}+15 i e^{2 i (e+f x)}-3 e^{3 i (e+f x)}\right )+\left (-i+e^{i (e+f x)}\right )^5 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (e+f x)}\right )\right ) \sqrt {a (1+\sin (e+f x))}}{45 c^3 \left (-i+e^{i (e+f x)}\right )^4 \sqrt {i c e^{-i (e+f x)} \left (-i+e^{i (e+f x)}\right )^2} \left (i+e^{i (e+f x)}\right ) \left (1+e^{2 i (e+f x)}\right )^{3/2} f} \] Input:

Integrate[((g*Cos[e + f*x])^(3/2)*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + 
 f*x])^(7/2),x]
 

Output:

(4*E^((3*I)*(e + f*x))*(((1 + E^((2*I)*(e + f*x)))*g)/E^(I*(e + f*x)))^(3/ 
2)*(Sqrt[1 + E^((2*I)*(e + f*x))]*(-29*I + E^(I*(e + f*x)) + (15*I)*E^((2* 
I)*(e + f*x)) - 3*E^((3*I)*(e + f*x))) + (-I + E^(I*(e + f*x)))^5*Hypergeo 
metric2F1[1/2, 3/4, 7/4, -E^((2*I)*(e + f*x))])*Sqrt[a*(1 + Sin[e + f*x])] 
)/(45*c^3*(-I + E^(I*(e + f*x)))^4*Sqrt[(I*c*(-I + E^(I*(e + f*x)))^2)/E^( 
I*(e + f*x))]*(I + E^(I*(e + f*x)))*(1 + E^((2*I)*(e + f*x)))^(3/2)*f)
 

Rubi [A] (verified)

Time = 1.91 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.02, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 3329, 3042, 3331, 3042, 3331, 3042, 3321, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \sin (e+f x)+a} (g \cos (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin (e+f x)+a} (g \cos (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}}dx\)

\(\Big \downarrow \) 3329

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{9 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}-\frac {a \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{5/2}}dx}{3 c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{9 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}-\frac {a \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{5/2}}dx}{3 c}\)

\(\Big \downarrow \) 3331

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{9 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}-\frac {a \left (\frac {\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{3/2}}dx}{5 c}+\frac {2 (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{3 c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{9 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}-\frac {a \left (\frac {\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{3/2}}dx}{5 c}+\frac {2 (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{3 c}\)

\(\Big \downarrow \) 3331

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{9 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}-\frac {a \left (\frac {\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{c}}{5 c}+\frac {2 (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{3 c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{9 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}-\frac {a \left (\frac {\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{c}}{5 c}+\frac {2 (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{3 c}\)

\(\Big \downarrow \) 3321

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{9 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}-\frac {a \left (\frac {\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {g \cos (e+f x) \int \sqrt {g \cos (e+f x)}dx}{c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}}{5 c}+\frac {2 (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{3 c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{9 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}-\frac {a \left (\frac {\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {g \cos (e+f x) \int \sqrt {g \sin \left (e+f x+\frac {\pi }{2}\right )}dx}{c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}}{5 c}+\frac {2 (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{3 c}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{9 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}-\frac {a \left (\frac {\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} \int \sqrt {\cos (e+f x)}dx}{c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}}{5 c}+\frac {2 (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{3 c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{9 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}-\frac {a \left (\frac {\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} \int \sqrt {\sin \left (e+f x+\frac {\pi }{2}\right )}dx}{c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}}{5 c}+\frac {2 (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{3 c}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {4 a (g \cos (e+f x))^{5/2}}{9 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}-\frac {a \left (\frac {2 (g \cos (e+f x))^{5/2}}{5 f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}+\frac {\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {2 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}}{5 c}\right )}{3 c}\)

Input:

Int[((g*Cos[e + f*x])^(3/2)*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + f*x]) 
^(7/2),x]
 

Output:

(4*a*(g*Cos[e + f*x])^(5/2))/(9*f*g*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e 
+ f*x])^(7/2)) - (a*((2*(g*Cos[e + f*x])^(5/2))/(5*f*g*Sqrt[a + a*Sin[e + 
f*x]]*(c - c*Sin[e + f*x])^(5/2)) + ((2*(g*Cos[e + f*x])^(5/2))/(f*g*Sqrt[ 
a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)) - (2*g*Sqrt[Cos[e + f*x]]* 
Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(c*f*Sqrt[a + a*Sin[e + f* 
x]]*Sqrt[c - c*Sin[e + f*x]]))/(5*c)))/(3*c)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3321
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[g* 
(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]))   Int[(g 
*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ 
[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 3329
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2 
*b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f* 
x])^n/(f*g*(2*n + p + 1))), x] - Simp[b*((2*m + p - 1)/(d*(2*n + p + 1))) 
 Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^( 
n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] & 
& EqQ[a^2 - b^2, 0] && GtQ[m, 0] && LtQ[n, -1] && NeQ[2*n + p + 1, 0] && In 
tegersQ[2*m, 2*n, 2*p]
 

rule 3331
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b* 
(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a* 
f*g*(2*m + p + 1))), x] + Simp[(m + n + p + 1)/(a*(2*m + p + 1))   Int[(g*C 
os[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] 
/; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - 
b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] &&  !LtQ[m, n, -1] && Integers 
Q[2*m, 2*n, 2*p]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1679\) vs. \(2(205)=410\).

Time = 41.53 (sec) , antiderivative size = 1680, normalized size of antiderivative = 7.09

method result size
default \(\text {Expression too large to display}\) \(1680\)

Input:

int((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(7/2),x,m 
ethod=_RETURNVERBOSE)
 

Output:

-g/c^3*(-2/77/f/(1+2^(1/2))*((cos(1/2*f*x+1/2*e)+1)*(-(4*cos(1/2*f*x+1/2*e 
)^4-8*cos(1/2*f*x+1/2*e)^2-1)*sin(1/2*f*x+1/2*e)+cos(1/2*f*x+1/2*e)*(4*cos 
(1/2*f*x+1/2*e)^4-5))*2^(1/2)*((2^(1/2)*cos(1/2*f*x+1/2*e)-2^(1/2)+2*cos(1 
/2*f*x+1/2*e)-1)/(cos(1/2*f*x+1/2*e)+1))^(1/2)*(-2*(2^(1/2)*cos(1/2*f*x+1/ 
2*e)-2^(1/2)-2*cos(1/2*f*x+1/2*e)+1)/(cos(1/2*f*x+1/2*e)+1))^(1/2)*Ellipti 
cF((1+2^(1/2))*(csc(1/2*f*x+1/2*e)-cot(1/2*f*x+1/2*e)),-2*2^(1/2)+3)+2*((2 
*cos(1/2*f*x+1/2*e)^4+cos(1/2*f*x+1/2*e)^2+6)*sin(1/2*f*x+1/2*e)+2*cos(1/2 
*f*x+1/2*e)^5-5*cos(1/2*f*x+1/2*e)^3+9*cos(1/2*f*x+1/2*e))*2^(1/2)+2*(2*co 
s(1/2*f*x+1/2*e)^4+cos(1/2*f*x+1/2*e)^2+6)*sin(1/2*f*x+1/2*e)+4*cos(1/2*f* 
x+1/2*e)^5-10*cos(1/2*f*x+1/2*e)^3+18*cos(1/2*f*x+1/2*e))*(g*(-1+2*cos(1/2 
*f*x+1/2*e)^2))^(1/2)*((2*cos(1/2*f*x+1/2*e)*sin(1/2*f*x+1/2*e)+1)*a)^(1/2 
)/(-(2*cos(1/2*f*x+1/2*e)*sin(1/2*f*x+1/2*e)-1)*c)^(1/2)/(8*cos(1/2*f*x+1/ 
2*e)^7+8*cos(1/2*f*x+1/2*e)^6*sin(1/2*f*x+1/2*e)-20*cos(1/2*f*x+1/2*e)^5-4 
*cos(1/2*f*x+1/2*e)^4*sin(1/2*f*x+1/2*e)+14*cos(1/2*f*x+1/2*e)^3-2*cos(1/2 
*f*x+1/2*e)^2*sin(1/2*f*x+1/2*e)-3*cos(1/2*f*x+1/2*e)+sin(1/2*f*x+1/2*e))+ 
1/3465/f/(1+2^(1/2))/(2*2^(1/2)-3)*(462+231*(cos(1/2*f*x+1/2*e)^2+2*cos(1/ 
2*f*x+1/2*e)+1)*(-(4*cos(1/2*f*x+1/2*e)^4-8*cos(1/2*f*x+1/2*e)^2-1)*sin(1/ 
2*f*x+1/2*e)+cos(1/2*f*x+1/2*e)*(4*cos(1/2*f*x+1/2*e)^4-5))*2^(1/2)*Ellipt 
icE((1+2^(1/2))*(csc(1/2*f*x+1/2*e)-cot(1/2*f*x+1/2*e)),-2*2^(1/2)+3)*(-2* 
(2^(1/2)*cos(1/2*f*x+1/2*e)-2^(1/2)-2*cos(1/2*f*x+1/2*e)+1)/(cos(1/2*f*...
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.06 \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {2 \, {\left (3 \, \sqrt {\frac {1}{2}} \sqrt {a c g} {\left (-3 i \, g \cos \left (f x + e\right )^{2} + {\left (i \, g \cos \left (f x + e\right )^{2} - 4 i \, g\right )} \sin \left (f x + e\right ) + 4 i \, g\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + 3 \, \sqrt {\frac {1}{2}} \sqrt {a c g} {\left (3 i \, g \cos \left (f x + e\right )^{2} + {\left (-i \, g \cos \left (f x + e\right )^{2} + 4 i \, g\right )} \sin \left (f x + e\right ) - 4 i \, g\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right ) - {\left (3 \, g \cos \left (f x + e\right )^{2} + 9 \, g \sin \left (f x + e\right ) + g\right )} \sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}\right )}}{45 \, {\left (3 \, c^{4} f \cos \left (f x + e\right )^{2} - 4 \, c^{4} f - {\left (c^{4} f \cos \left (f x + e\right )^{2} - 4 \, c^{4} f\right )} \sin \left (f x + e\right )\right )}} \] Input:

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(7/ 
2),x, algorithm="fricas")
 

Output:

2/45*(3*sqrt(1/2)*sqrt(a*c*g)*(-3*I*g*cos(f*x + e)^2 + (I*g*cos(f*x + e)^2 
 - 4*I*g)*sin(f*x + e) + 4*I*g)*weierstrassZeta(-4, 0, weierstrassPInverse 
(-4, 0, cos(f*x + e) + I*sin(f*x + e))) + 3*sqrt(1/2)*sqrt(a*c*g)*(3*I*g*c 
os(f*x + e)^2 + (-I*g*cos(f*x + e)^2 + 4*I*g)*sin(f*x + e) - 4*I*g)*weiers 
trassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) - I*sin(f*x + e)) 
) - (3*g*cos(f*x + e)^2 + 9*g*sin(f*x + e) + g)*sqrt(g*cos(f*x + e))*sqrt( 
a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c))/(3*c^4*f*cos(f*x + e)^2 - 4 
*c^4*f - (c^4*f*cos(f*x + e)^2 - 4*c^4*f)*sin(f*x + e))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{7/2}} \, dx=\text {Timed out} \] Input:

integrate((g*cos(f*x+e))**(3/2)*(a+a*sin(f*x+e))**(1/2)/(c-c*sin(f*x+e))** 
(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{7/2}} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} \sqrt {a \sin \left (f x + e\right ) + a}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(7/ 
2),x, algorithm="maxima")
 

Output:

integrate((g*cos(f*x + e))^(3/2)*sqrt(a*sin(f*x + e) + a)/(-c*sin(f*x + e) 
 + c)^(7/2), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{7/2}} \, dx=\text {Timed out} \] Input:

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(7/ 
2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{7/2}} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{7/2}} \,d x \] Input:

int(((g*cos(e + f*x))^(3/2)*(a + a*sin(e + f*x))^(1/2))/(c - c*sin(e + f*x 
))^(7/2),x)
 

Output:

int(((g*cos(e + f*x))^(3/2)*(a + a*sin(e + f*x))^(1/2))/(c - c*sin(e + f*x 
))^(7/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{7/2}} \, dx=\text {too large to display} \] Input:

int((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(7/2),x)
 

Output:

(sqrt(g)*sqrt(c)*sqrt(a)*g*(2*sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) 
+ 1)*sqrt(cos(e + f*x))*sin(e + f*x)**2 - 6*sqrt(sin(e + f*x) + 1)*sqrt( - 
 sin(e + f*x) + 1)*sqrt(cos(e + f*x))*sin(e + f*x) - 8*sqrt(sin(e + f*x) + 
 1)*sqrt( - sin(e + f*x) + 1)*sqrt(cos(e + f*x)) - 6*int((sqrt(sin(e + f*x 
) + 1)*sqrt( - sin(e + f*x) + 1)*sqrt(cos(e + f*x))*sin(e + f*x)**2)/(cos( 
e + f*x)*sin(e + f*x)**4 - 2*cos(e + f*x)*sin(e + f*x)**3 + 2*cos(e + f*x) 
*sin(e + f*x) - cos(e + f*x)),x)*sin(e + f*x)**3*f + 18*int((sqrt(sin(e + 
f*x) + 1)*sqrt( - sin(e + f*x) + 1)*sqrt(cos(e + f*x))*sin(e + f*x)**2)/(c 
os(e + f*x)*sin(e + f*x)**4 - 2*cos(e + f*x)*sin(e + f*x)**3 + 2*cos(e + f 
*x)*sin(e + f*x) - cos(e + f*x)),x)*sin(e + f*x)**2*f - 18*int((sqrt(sin(e 
 + f*x) + 1)*sqrt( - sin(e + f*x) + 1)*sqrt(cos(e + f*x))*sin(e + f*x)**2) 
/(cos(e + f*x)*sin(e + f*x)**4 - 2*cos(e + f*x)*sin(e + f*x)**3 + 2*cos(e 
+ f*x)*sin(e + f*x) - cos(e + f*x)),x)*sin(e + f*x)*f + 6*int((sqrt(sin(e 
+ f*x) + 1)*sqrt( - sin(e + f*x) + 1)*sqrt(cos(e + f*x))*sin(e + f*x)**2)/ 
(cos(e + f*x)*sin(e + f*x)**4 - 2*cos(e + f*x)*sin(e + f*x)**3 + 2*cos(e + 
 f*x)*sin(e + f*x) - cos(e + f*x)),x)*f + int((sqrt(sin(e + f*x) + 1)*sqrt 
( - sin(e + f*x) + 1)*sqrt(cos(e + f*x))*sin(e + f*x)**2)/(cos(e + f*x)*si 
n(e + f*x)**2 - 2*cos(e + f*x)*sin(e + f*x) + cos(e + f*x)),x)*sin(e + f*x 
)**3*f - 3*int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1)*sqrt(cos( 
e + f*x))*sin(e + f*x)**2)/(cos(e + f*x)*sin(e + f*x)**2 - 2*cos(e + f*...