\(\int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+b \sin (c+d x)} \, dx\) [1289]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 194 \[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {2 b^3 \sqrt {a^2-b^2} \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{a^5 d}+\frac {\left (a^4+4 a^2 b^2-8 b^4\right ) \text {arctanh}(\cos (c+d x))}{8 a^5 d}-\frac {b \left (a^2-3 b^2\right ) \cot (c+d x)}{3 a^4 d}+\frac {\left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 a^3 d}+\frac {b \cot (c+d x) \csc ^2(c+d x)}{3 a^2 d}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d} \] Output:

2*b^3*(a^2-b^2)^(1/2)*arctan((b+a*tan(1/2*d*x+1/2*c))/(a^2-b^2)^(1/2))/a^5 
/d+1/8*(a^4+4*a^2*b^2-8*b^4)*arctanh(cos(d*x+c))/a^5/d-1/3*b*(a^2-3*b^2)*c 
ot(d*x+c)/a^4/d+1/8*(a^2-4*b^2)*cot(d*x+c)*csc(d*x+c)/a^3/d+1/3*b*cot(d*x+ 
c)*csc(d*x+c)^2/a^2/d-1/4*cot(d*x+c)*csc(d*x+c)^3/a/d
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(430\) vs. \(2(194)=388\).

Time = 7.49 (sec) , antiderivative size = 430, normalized size of antiderivative = 2.22 \[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {2 b^3 \sqrt {a^2-b^2} \arctan \left (\frac {\sec \left (\frac {1}{2} (c+d x)\right ) \left (b \cos \left (\frac {1}{2} (c+d x)\right )+a \sin \left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {a^2-b^2}}\right )}{a^5 d}+\frac {\left (-a^2 b \cos \left (\frac {1}{2} (c+d x)\right )+3 b^3 \cos \left (\frac {1}{2} (c+d x)\right )\right ) \csc \left (\frac {1}{2} (c+d x)\right )}{6 a^4 d}+\frac {\left (a^2-4 b^2\right ) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{32 a^3 d}+\frac {b \cot \left (\frac {1}{2} (c+d x)\right ) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{24 a^2 d}-\frac {\csc ^4\left (\frac {1}{2} (c+d x)\right )}{64 a d}+\frac {\left (a^4+4 a^2 b^2-8 b^4\right ) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )}{8 a^5 d}+\frac {\left (-a^4-4 a^2 b^2+8 b^4\right ) \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )}{8 a^5 d}+\frac {\left (-a^2+4 b^2\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{32 a^3 d}+\frac {\sec ^4\left (\frac {1}{2} (c+d x)\right )}{64 a d}+\frac {\sec \left (\frac {1}{2} (c+d x)\right ) \left (a^2 b \sin \left (\frac {1}{2} (c+d x)\right )-3 b^3 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{6 a^4 d}-\frac {b \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )}{24 a^2 d} \] Input:

Integrate[(Cot[c + d*x]^2*Csc[c + d*x]^3)/(a + b*Sin[c + d*x]),x]
 

Output:

(2*b^3*Sqrt[a^2 - b^2]*ArcTan[(Sec[(c + d*x)/2]*(b*Cos[(c + d*x)/2] + a*Si 
n[(c + d*x)/2]))/Sqrt[a^2 - b^2]])/(a^5*d) + ((-(a^2*b*Cos[(c + d*x)/2]) + 
 3*b^3*Cos[(c + d*x)/2])*Csc[(c + d*x)/2])/(6*a^4*d) + ((a^2 - 4*b^2)*Csc[ 
(c + d*x)/2]^2)/(32*a^3*d) + (b*Cot[(c + d*x)/2]*Csc[(c + d*x)/2]^2)/(24*a 
^2*d) - Csc[(c + d*x)/2]^4/(64*a*d) + ((a^4 + 4*a^2*b^2 - 8*b^4)*Log[Cos[( 
c + d*x)/2]])/(8*a^5*d) + ((-a^4 - 4*a^2*b^2 + 8*b^4)*Log[Sin[(c + d*x)/2] 
])/(8*a^5*d) + ((-a^2 + 4*b^2)*Sec[(c + d*x)/2]^2)/(32*a^3*d) + Sec[(c + d 
*x)/2]^4/(64*a*d) + (Sec[(c + d*x)/2]*(a^2*b*Sin[(c + d*x)/2] - 3*b^3*Sin[ 
(c + d*x)/2]))/(6*a^4*d) - (b*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/(24*a^2 
*d)
 

Rubi [A] (verified)

Time = 1.79 (sec) , antiderivative size = 226, normalized size of antiderivative = 1.16, number of steps used = 21, number of rules used = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.690, Rules used = {3042, 3368, 3042, 3535, 25, 3042, 3534, 3042, 3534, 25, 3042, 3534, 27, 3042, 3480, 3042, 3139, 1083, 217, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+b \sin (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^2}{\sin (c+d x)^5 (a+b \sin (c+d x))}dx\)

\(\Big \downarrow \) 3368

\(\displaystyle \int \frac {\left (1-\sin ^2(c+d x)\right ) \csc ^5(c+d x)}{a+b \sin (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1-\sin (c+d x)^2}{\sin (c+d x)^5 (a+b \sin (c+d x))}dx\)

\(\Big \downarrow \) 3535

\(\displaystyle \frac {\int -\frac {\csc ^4(c+d x) \left (-3 b \sin ^2(c+d x)+a \sin (c+d x)+4 b\right )}{a+b \sin (c+d x)}dx}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {\csc ^4(c+d x) \left (-3 b \sin ^2(c+d x)+a \sin (c+d x)+4 b\right )}{a+b \sin (c+d x)}dx}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {-3 b \sin (c+d x)^2+a \sin (c+d x)+4 b}{\sin (c+d x)^4 (a+b \sin (c+d x))}dx}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 3534

\(\displaystyle -\frac {\frac {\int \frac {\csc ^3(c+d x) \left (8 b^2 \sin ^2(c+d x)-a b \sin (c+d x)+3 \left (a^2-4 b^2\right )\right )}{a+b \sin (c+d x)}dx}{3 a}-\frac {4 b \cot (c+d x) \csc ^2(c+d x)}{3 a d}}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {8 b^2 \sin (c+d x)^2-a b \sin (c+d x)+3 \left (a^2-4 b^2\right )}{\sin (c+d x)^3 (a+b \sin (c+d x))}dx}{3 a}-\frac {4 b \cot (c+d x) \csc ^2(c+d x)}{3 a d}}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 3534

\(\displaystyle -\frac {\frac {\frac {\int -\frac {\csc ^2(c+d x) \left (-3 b \left (a^2-4 b^2\right ) \sin ^2(c+d x)-a \left (3 a^2+4 b^2\right ) \sin (c+d x)+8 b \left (a^2-3 b^2\right )\right )}{a+b \sin (c+d x)}dx}{2 a}-\frac {3 \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{2 a d}}{3 a}-\frac {4 b \cot (c+d x) \csc ^2(c+d x)}{3 a d}}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {-\frac {\int \frac {\csc ^2(c+d x) \left (-3 b \left (a^2-4 b^2\right ) \sin ^2(c+d x)-a \left (3 a^2+4 b^2\right ) \sin (c+d x)+8 b \left (a^2-3 b^2\right )\right )}{a+b \sin (c+d x)}dx}{2 a}-\frac {3 \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{2 a d}}{3 a}-\frac {4 b \cot (c+d x) \csc ^2(c+d x)}{3 a d}}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {-\frac {\int \frac {-3 b \left (a^2-4 b^2\right ) \sin (c+d x)^2-a \left (3 a^2+4 b^2\right ) \sin (c+d x)+8 b \left (a^2-3 b^2\right )}{\sin (c+d x)^2 (a+b \sin (c+d x))}dx}{2 a}-\frac {3 \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{2 a d}}{3 a}-\frac {4 b \cot (c+d x) \csc ^2(c+d x)}{3 a d}}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 3534

\(\displaystyle -\frac {\frac {-\frac {\frac {\int -\frac {3 \csc (c+d x) \left (a^4+4 b^2 a^2+b \left (a^2-4 b^2\right ) \sin (c+d x) a-8 b^4\right )}{a+b \sin (c+d x)}dx}{a}-\frac {8 b \left (a^2-3 b^2\right ) \cot (c+d x)}{a d}}{2 a}-\frac {3 \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{2 a d}}{3 a}-\frac {4 b \cot (c+d x) \csc ^2(c+d x)}{3 a d}}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {-\frac {-\frac {3 \int \frac {\csc (c+d x) \left (a^4+4 b^2 a^2+b \left (a^2-4 b^2\right ) \sin (c+d x) a-8 b^4\right )}{a+b \sin (c+d x)}dx}{a}-\frac {8 b \left (a^2-3 b^2\right ) \cot (c+d x)}{a d}}{2 a}-\frac {3 \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{2 a d}}{3 a}-\frac {4 b \cot (c+d x) \csc ^2(c+d x)}{3 a d}}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {-\frac {-\frac {3 \int \frac {a^4+4 b^2 a^2+b \left (a^2-4 b^2\right ) \sin (c+d x) a-8 b^4}{\sin (c+d x) (a+b \sin (c+d x))}dx}{a}-\frac {8 b \left (a^2-3 b^2\right ) \cot (c+d x)}{a d}}{2 a}-\frac {3 \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{2 a d}}{3 a}-\frac {4 b \cot (c+d x) \csc ^2(c+d x)}{3 a d}}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 3480

\(\displaystyle -\frac {\frac {-\frac {-\frac {3 \left (\frac {\left (a^4+4 a^2 b^2-8 b^4\right ) \int \csc (c+d x)dx}{a}-\frac {8 b^3 \left (a^2-b^2\right ) \int \frac {1}{a+b \sin (c+d x)}dx}{a}\right )}{a}-\frac {8 b \left (a^2-3 b^2\right ) \cot (c+d x)}{a d}}{2 a}-\frac {3 \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{2 a d}}{3 a}-\frac {4 b \cot (c+d x) \csc ^2(c+d x)}{3 a d}}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {-\frac {-\frac {3 \left (\frac {\left (a^4+4 a^2 b^2-8 b^4\right ) \int \csc (c+d x)dx}{a}-\frac {8 b^3 \left (a^2-b^2\right ) \int \frac {1}{a+b \sin (c+d x)}dx}{a}\right )}{a}-\frac {8 b \left (a^2-3 b^2\right ) \cot (c+d x)}{a d}}{2 a}-\frac {3 \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{2 a d}}{3 a}-\frac {4 b \cot (c+d x) \csc ^2(c+d x)}{3 a d}}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 3139

\(\displaystyle -\frac {\frac {-\frac {-\frac {3 \left (\frac {\left (a^4+4 a^2 b^2-8 b^4\right ) \int \csc (c+d x)dx}{a}-\frac {16 b^3 \left (a^2-b^2\right ) \int \frac {1}{a \tan ^2\left (\frac {1}{2} (c+d x)\right )+2 b \tan \left (\frac {1}{2} (c+d x)\right )+a}d\tan \left (\frac {1}{2} (c+d x)\right )}{a d}\right )}{a}-\frac {8 b \left (a^2-3 b^2\right ) \cot (c+d x)}{a d}}{2 a}-\frac {3 \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{2 a d}}{3 a}-\frac {4 b \cot (c+d x) \csc ^2(c+d x)}{3 a d}}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 1083

\(\displaystyle -\frac {\frac {-\frac {-\frac {3 \left (\frac {32 b^3 \left (a^2-b^2\right ) \int \frac {1}{-\left (2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )^2-4 \left (a^2-b^2\right )}d\left (2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )}{a d}+\frac {\left (a^4+4 a^2 b^2-8 b^4\right ) \int \csc (c+d x)dx}{a}\right )}{a}-\frac {8 b \left (a^2-3 b^2\right ) \cot (c+d x)}{a d}}{2 a}-\frac {3 \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{2 a d}}{3 a}-\frac {4 b \cot (c+d x) \csc ^2(c+d x)}{3 a d}}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {\frac {-\frac {-\frac {3 \left (\frac {\left (a^4+4 a^2 b^2-8 b^4\right ) \int \csc (c+d x)dx}{a}-\frac {16 b^3 \sqrt {a^2-b^2} \arctan \left (\frac {2 a \tan \left (\frac {1}{2} (c+d x)\right )+2 b}{2 \sqrt {a^2-b^2}}\right )}{a d}\right )}{a}-\frac {8 b \left (a^2-3 b^2\right ) \cot (c+d x)}{a d}}{2 a}-\frac {3 \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{2 a d}}{3 a}-\frac {4 b \cot (c+d x) \csc ^2(c+d x)}{3 a d}}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

\(\Big \downarrow \) 4257

\(\displaystyle -\frac {\frac {-\frac {3 \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{2 a d}-\frac {-\frac {8 b \left (a^2-3 b^2\right ) \cot (c+d x)}{a d}-\frac {3 \left (-\frac {16 b^3 \sqrt {a^2-b^2} \arctan \left (\frac {2 a \tan \left (\frac {1}{2} (c+d x)\right )+2 b}{2 \sqrt {a^2-b^2}}\right )}{a d}-\frac {\left (a^4+4 a^2 b^2-8 b^4\right ) \text {arctanh}(\cos (c+d x))}{a d}\right )}{a}}{2 a}}{3 a}-\frac {4 b \cot (c+d x) \csc ^2(c+d x)}{3 a d}}{4 a}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d}\)

Input:

Int[(Cot[c + d*x]^2*Csc[c + d*x]^3)/(a + b*Sin[c + d*x]),x]
 

Output:

-1/4*(Cot[c + d*x]*Csc[c + d*x]^3)/(a*d) - ((-4*b*Cot[c + d*x]*Csc[c + d*x 
]^2)/(3*a*d) + (-1/2*((-3*((-16*b^3*Sqrt[a^2 - b^2]*ArcTan[(2*b + 2*a*Tan[ 
(c + d*x)/2])/(2*Sqrt[a^2 - b^2])])/(a*d) - ((a^4 + 4*a^2*b^2 - 8*b^4)*Arc 
Tanh[Cos[c + d*x]])/(a*d)))/a - (8*b*(a^2 - 3*b^2)*Cot[c + d*x])/(a*d))/a 
- (3*(a^2 - 4*b^2)*Cot[c + d*x]*Csc[c + d*x])/(2*a*d))/(3*a))/(4*a)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3139
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = Fre 
eFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + 2*b*e*x + a 
*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] && NeQ 
[a^2 - b^2, 0]
 

rule 3368
Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + 
(b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Int[(d*Sin[e + f*x])^n*(a 
 + b*Sin[e + f*x])^m*(1 - Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, m, n 
}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n])
 

rule 3480
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A*b 
- a*B)/(b*c - a*d)   Int[1/(a + b*Sin[e + f*x]), x], x] + Simp[(B*c - A*d)/ 
(b*c - a*d)   Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 3535
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(A*b^2 + a^2*C))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*S 
in[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m 
+ 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin 
[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*(m + n 
+ 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d 
*(A*b^2 + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 
- d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) || 
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 
 0])))
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 0.79 (sec) , antiderivative size = 252, normalized size of antiderivative = 1.30

method result size
derivativedivides \(\frac {\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a^{3}}{4}-\frac {2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a^{2}}{3}+2 a \,b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 a^{2} b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-8 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{3}}{16 a^{4}}+\frac {2 b^{3} \sqrt {a^{2}-b^{2}}\, \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{a^{5}}-\frac {1}{64 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}+\frac {\left (-2 a^{4}-8 a^{2} b^{2}+16 b^{4}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16 a^{5}}+\frac {b}{24 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-\frac {b^{2}}{8 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-\frac {b \left (a^{2}-4 b^{2}\right )}{8 a^{4} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}}{d}\) \(252\)
default \(\frac {\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a^{3}}{4}-\frac {2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a^{2}}{3}+2 a \,b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 a^{2} b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-8 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{3}}{16 a^{4}}+\frac {2 b^{3} \sqrt {a^{2}-b^{2}}\, \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{a^{5}}-\frac {1}{64 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}+\frac {\left (-2 a^{4}-8 a^{2} b^{2}+16 b^{4}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16 a^{5}}+\frac {b}{24 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-\frac {b^{2}}{8 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-\frac {b \left (a^{2}-4 b^{2}\right )}{8 a^{4} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}}{d}\) \(252\)
risch \(\frac {i \left (21 i a^{3} {\mathrm e}^{3 i \left (d x +c \right )}+12 i a \,b^{2} {\mathrm e}^{3 i \left (d x +c \right )}-12 i a \,b^{2} {\mathrm e}^{7 i \left (d x +c \right )}+3 i a^{3} {\mathrm e}^{7 i \left (d x +c \right )}-24 a^{2} b \,{\mathrm e}^{6 i \left (d x +c \right )}+24 b^{3} {\mathrm e}^{6 i \left (d x +c \right )}+3 i a^{3} {\mathrm e}^{i \left (d x +c \right )}-12 i a \,b^{2} {\mathrm e}^{i \left (d x +c \right )}+24 a^{2} b \,{\mathrm e}^{4 i \left (d x +c \right )}-72 b^{3} {\mathrm e}^{4 i \left (d x +c \right )}+12 i a \,b^{2} {\mathrm e}^{5 i \left (d x +c \right )}+21 i a^{3} {\mathrm e}^{5 i \left (d x +c \right )}-8 \,{\mathrm e}^{2 i \left (d x +c \right )} a^{2} b +72 \,{\mathrm e}^{2 i \left (d x +c \right )} b^{3}+8 a^{2} b -24 b^{3}\right )}{12 d \,a^{4} \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{4}}+\frac {i \sqrt {a^{2}-b^{2}}\, b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (\sqrt {a^{2}-b^{2}}+a \right )}{b}\right )}{d \,a^{5}}-\frac {i \sqrt {a^{2}-b^{2}}\, b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i \left (\sqrt {a^{2}-b^{2}}-a \right )}{b}\right )}{d \,a^{5}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{8 d a}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right ) b^{2}}{2 d \,a^{3}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right ) b^{4}}{a^{5} d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{8 d a}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right ) b^{2}}{2 d \,a^{3}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right ) b^{4}}{a^{5} d}\) \(486\)

Input:

int(cot(d*x+c)^2*csc(d*x+c)^3/(a+b*sin(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

1/d*(1/16/a^4*(1/4*tan(1/2*d*x+1/2*c)^4*a^3-2/3*b*tan(1/2*d*x+1/2*c)^3*a^2 
+2*a*b^2*tan(1/2*d*x+1/2*c)^2+2*a^2*b*tan(1/2*d*x+1/2*c)-8*tan(1/2*d*x+1/2 
*c)*b^3)+2*b^3*(a^2-b^2)^(1/2)/a^5*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b) 
/(a^2-b^2)^(1/2))-1/64/a/tan(1/2*d*x+1/2*c)^4+1/16/a^5*(-2*a^4-8*a^2*b^2+1 
6*b^4)*ln(tan(1/2*d*x+1/2*c))+1/24/a^2*b/tan(1/2*d*x+1/2*c)^3-1/8/a^3*b^2/ 
tan(1/2*d*x+1/2*c)^2-1/8*b*(a^2-4*b^2)/a^4/tan(1/2*d*x+1/2*c))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 362 vs. \(2 (179) = 358\).

Time = 0.29 (sec) , antiderivative size = 808, normalized size of antiderivative = 4.16 \[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+b \sin (c+d x)} \, dx =\text {Too large to display} \] Input:

integrate(cot(d*x+c)^2*csc(d*x+c)^3/(a+b*sin(d*x+c)),x, algorithm="fricas" 
)
 

Output:

[-1/48*(6*(a^4 - 4*a^2*b^2)*cos(d*x + c)^3 - 24*(b^3*cos(d*x + c)^4 - 2*b^ 
3*cos(d*x + c)^2 + b^3)*sqrt(-a^2 + b^2)*log(-((2*a^2 - b^2)*cos(d*x + c)^ 
2 - 2*a*b*sin(d*x + c) - a^2 - b^2 - 2*(a*cos(d*x + c)*sin(d*x + c) + b*co 
s(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a 
^2 - b^2)) + 6*(a^4 + 4*a^2*b^2)*cos(d*x + c) - 3*((a^4 + 4*a^2*b^2 - 8*b^ 
4)*cos(d*x + c)^4 + a^4 + 4*a^2*b^2 - 8*b^4 - 2*(a^4 + 4*a^2*b^2 - 8*b^4)* 
cos(d*x + c)^2)*log(1/2*cos(d*x + c) + 1/2) + 3*((a^4 + 4*a^2*b^2 - 8*b^4) 
*cos(d*x + c)^4 + a^4 + 4*a^2*b^2 - 8*b^4 - 2*(a^4 + 4*a^2*b^2 - 8*b^4)*co 
s(d*x + c)^2)*log(-1/2*cos(d*x + c) + 1/2) - 16*(3*a*b^3*cos(d*x + c) + (a 
^3*b - 3*a*b^3)*cos(d*x + c)^3)*sin(d*x + c))/(a^5*d*cos(d*x + c)^4 - 2*a^ 
5*d*cos(d*x + c)^2 + a^5*d), -1/48*(6*(a^4 - 4*a^2*b^2)*cos(d*x + c)^3 + 4 
8*(b^3*cos(d*x + c)^4 - 2*b^3*cos(d*x + c)^2 + b^3)*sqrt(a^2 - b^2)*arctan 
(-(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)*cos(d*x + c))) + 6*(a^4 + 4*a^2*b^ 
2)*cos(d*x + c) - 3*((a^4 + 4*a^2*b^2 - 8*b^4)*cos(d*x + c)^4 + a^4 + 4*a^ 
2*b^2 - 8*b^4 - 2*(a^4 + 4*a^2*b^2 - 8*b^4)*cos(d*x + c)^2)*log(1/2*cos(d* 
x + c) + 1/2) + 3*((a^4 + 4*a^2*b^2 - 8*b^4)*cos(d*x + c)^4 + a^4 + 4*a^2* 
b^2 - 8*b^4 - 2*(a^4 + 4*a^2*b^2 - 8*b^4)*cos(d*x + c)^2)*log(-1/2*cos(d*x 
 + c) + 1/2) - 16*(3*a*b^3*cos(d*x + c) + (a^3*b - 3*a*b^3)*cos(d*x + c)^3 
)*sin(d*x + c))/(a^5*d*cos(d*x + c)^4 - 2*a^5*d*cos(d*x + c)^2 + a^5*d)]
 

Sympy [F]

\[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\int \frac {\cot ^{2}{\left (c + d x \right )} \csc ^{3}{\left (c + d x \right )}}{a + b \sin {\left (c + d x \right )}}\, dx \] Input:

integrate(cot(d*x+c)**2*csc(d*x+c)**3/(a+b*sin(d*x+c)),x)
 

Output:

Integral(cot(c + d*x)**2*csc(c + d*x)**3/(a + b*sin(c + d*x)), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(cot(d*x+c)^2*csc(d*x+c)^3/(a+b*sin(d*x+c)),x, algorithm="maxima" 
)
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 

Giac [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 336, normalized size of antiderivative = 1.73 \[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {\frac {3 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 8 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 24 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 24 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 96 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{4}} - \frac {24 \, {\left (a^{4} + 4 \, a^{2} b^{2} - 8 \, b^{4}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{5}} + \frac {384 \, {\left (a^{2} b^{3} - b^{5}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (a\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{\sqrt {a^{2} - b^{2}} a^{5}} + \frac {50 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 200 \, a^{2} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 400 \, b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 24 \, a^{3} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 96 \, a b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 24 \, a^{2} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 8 \, a^{3} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, a^{4}}{a^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4}}}{192 \, d} \] Input:

integrate(cot(d*x+c)^2*csc(d*x+c)^3/(a+b*sin(d*x+c)),x, algorithm="giac")
 

Output:

1/192*((3*a^3*tan(1/2*d*x + 1/2*c)^4 - 8*a^2*b*tan(1/2*d*x + 1/2*c)^3 + 24 
*a*b^2*tan(1/2*d*x + 1/2*c)^2 + 24*a^2*b*tan(1/2*d*x + 1/2*c) - 96*b^3*tan 
(1/2*d*x + 1/2*c))/a^4 - 24*(a^4 + 4*a^2*b^2 - 8*b^4)*log(abs(tan(1/2*d*x 
+ 1/2*c)))/a^5 + 384*(a^2*b^3 - b^5)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn 
(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^ 
2)*a^5) + (50*a^4*tan(1/2*d*x + 1/2*c)^4 + 200*a^2*b^2*tan(1/2*d*x + 1/2*c 
)^4 - 400*b^4*tan(1/2*d*x + 1/2*c)^4 - 24*a^3*b*tan(1/2*d*x + 1/2*c)^3 + 9 
6*a*b^3*tan(1/2*d*x + 1/2*c)^3 - 24*a^2*b^2*tan(1/2*d*x + 1/2*c)^2 + 8*a^3 
*b*tan(1/2*d*x + 1/2*c) - 3*a^4)/(a^5*tan(1/2*d*x + 1/2*c)^4))/d
 

Mupad [B] (verification not implemented)

Time = 20.77 (sec) , antiderivative size = 873, normalized size of antiderivative = 4.50 \[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+b \sin (c+d x)} \, dx =\text {Too large to display} \] Input:

int(cot(c + d*x)^2/(sin(c + d*x)^3*(a + b*sin(c + d*x))),x)
 

Output:

tan(c/2 + (d*x)/2)^4/(64*a*d) + (tan(c/2 + (d*x)/2)*(b/(8*a^2) - b^3/(2*a^ 
4)))/d - (tan(c/2 + (d*x)/2)^3*(2*a^2*b - 8*b^3) + a^3/4 - (2*a^2*b*tan(c/ 
2 + (d*x)/2))/3 + 2*a*b^2*tan(c/2 + (d*x)/2)^2)/(16*a^4*d*tan(c/2 + (d*x)/ 
2)^4) - (log(tan(c/2 + (d*x)/2))*(a^4 - 8*b^4 + 4*a^2*b^2))/(8*a^5*d) - (b 
*tan(c/2 + (d*x)/2)^3)/(24*a^2*d) + (b^2*tan(c/2 + (d*x)/2)^2)/(8*a^3*d) + 
 (b^3*atan(((b^3*(b^2 - a^2)^(1/2)*((tan(c/2 + (d*x)/2)*(a^9 + 32*a^3*b^6 
- 32*a^5*b^4 + 2*a^7*b^2))/(4*a^7) - (a^9*b - 16*a^5*b^5 + 12*a^7*b^3)/(4* 
a^8) + (b^3*(2*a^2*b - (tan(c/2 + (d*x)/2)*(24*a^10 - 32*a^8*b^2))/(4*a^7) 
)*(b^2 - a^2)^(1/2))/a^5)*1i)/a^5 - (b^3*(b^2 - a^2)^(1/2)*((a^9*b - 16*a^ 
5*b^5 + 12*a^7*b^3)/(4*a^8) - (tan(c/2 + (d*x)/2)*(a^9 + 32*a^3*b^6 - 32*a 
^5*b^4 + 2*a^7*b^2))/(4*a^7) + (b^3*(2*a^2*b - (tan(c/2 + (d*x)/2)*(24*a^1 
0 - 32*a^8*b^2))/(4*a^7))*(b^2 - a^2)^(1/2))/a^5)*1i)/a^5)/((8*b^9 - 12*a^ 
2*b^7 + 3*a^4*b^5 + a^6*b^3)/(2*a^8) + (tan(c/2 + (d*x)/2)*(8*b^8 - 10*a^2 
*b^6 + 2*a^4*b^4))/(2*a^7) + (b^3*(b^2 - a^2)^(1/2)*((tan(c/2 + (d*x)/2)*( 
a^9 + 32*a^3*b^6 - 32*a^5*b^4 + 2*a^7*b^2))/(4*a^7) - (a^9*b - 16*a^5*b^5 
+ 12*a^7*b^3)/(4*a^8) + (b^3*(2*a^2*b - (tan(c/2 + (d*x)/2)*(24*a^10 - 32* 
a^8*b^2))/(4*a^7))*(b^2 - a^2)^(1/2))/a^5))/a^5 + (b^3*(b^2 - a^2)^(1/2)*( 
(a^9*b - 16*a^5*b^5 + 12*a^7*b^3)/(4*a^8) - (tan(c/2 + (d*x)/2)*(a^9 + 32* 
a^3*b^6 - 32*a^5*b^4 + 2*a^7*b^2))/(4*a^7) + (b^3*(2*a^2*b - (tan(c/2 + (d 
*x)/2)*(24*a^10 - 32*a^8*b^2))/(4*a^7))*(b^2 - a^2)^(1/2))/a^5))/a^5))*...
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 249, normalized size of antiderivative = 1.28 \[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {48 \sqrt {a^{2}-b^{2}}\, \mathit {atan} \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a +b}{\sqrt {a^{2}-b^{2}}}\right ) \sin \left (d x +c \right )^{4} b^{3}-8 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} a^{3} b +24 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} a \,b^{3}+3 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} a^{4}-12 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} a^{2} b^{2}+8 \cos \left (d x +c \right ) \sin \left (d x +c \right ) a^{3} b -6 \cos \left (d x +c \right ) a^{4}-3 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{4} a^{4}-12 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{4} a^{2} b^{2}+24 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{4} b^{4}}{24 \sin \left (d x +c \right )^{4} a^{5} d} \] Input:

int(cot(d*x+c)^2*csc(d*x+c)^3/(a+b*sin(d*x+c)),x)
 

Output:

(48*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a + b)/sqrt(a**2 - b**2))*sin 
(c + d*x)**4*b**3 - 8*cos(c + d*x)*sin(c + d*x)**3*a**3*b + 24*cos(c + d*x 
)*sin(c + d*x)**3*a*b**3 + 3*cos(c + d*x)*sin(c + d*x)**2*a**4 - 12*cos(c 
+ d*x)*sin(c + d*x)**2*a**2*b**2 + 8*cos(c + d*x)*sin(c + d*x)*a**3*b - 6* 
cos(c + d*x)*a**4 - 3*log(tan((c + d*x)/2))*sin(c + d*x)**4*a**4 - 12*log( 
tan((c + d*x)/2))*sin(c + d*x)**4*a**2*b**2 + 24*log(tan((c + d*x)/2))*sin 
(c + d*x)**4*b**4)/(24*sin(c + d*x)**4*a**5*d)