\(\int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx\) [1303]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 154 \[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {2 \left (a^2-b^2\right )^{3/2} \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{a^4 d}-\frac {b \left (3 a^2-2 b^2\right ) \text {arctanh}(\cos (c+d x))}{2 a^4 d}+\frac {\left (4 a^2-3 b^2\right ) \cot (c+d x)}{3 a^3 d}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d} \] Output:

2*(a^2-b^2)^(3/2)*arctan((b+a*tan(1/2*d*x+1/2*c))/(a^2-b^2)^(1/2))/a^4/d-1 
/2*b*(3*a^2-2*b^2)*arctanh(cos(d*x+c))/a^4/d+1/3*(4*a^2-3*b^2)*cot(d*x+c)/ 
a^3/d+1/2*b*cot(d*x+c)*csc(d*x+c)/a^2/d-1/3*cot(d*x+c)*csc(d*x+c)^2/a/d
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(350\) vs. \(2(154)=308\).

Time = 6.10 (sec) , antiderivative size = 350, normalized size of antiderivative = 2.27 \[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {2 \left (a^2-b^2\right )^{3/2} \arctan \left (\frac {\sec \left (\frac {1}{2} (c+d x)\right ) \left (b \cos \left (\frac {1}{2} (c+d x)\right )+a \sin \left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {a^2-b^2}}\right )}{a^4 d}+\frac {\left (4 a^2 \cos \left (\frac {1}{2} (c+d x)\right )-3 b^2 \cos \left (\frac {1}{2} (c+d x)\right )\right ) \csc \left (\frac {1}{2} (c+d x)\right )}{6 a^3 d}+\frac {b \csc ^2\left (\frac {1}{2} (c+d x)\right )}{8 a^2 d}-\frac {\cot \left (\frac {1}{2} (c+d x)\right ) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{24 a d}+\frac {\left (-3 a^2 b+2 b^3\right ) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )}{2 a^4 d}+\frac {\left (3 a^2 b-2 b^3\right ) \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )}{2 a^4 d}-\frac {b \sec ^2\left (\frac {1}{2} (c+d x)\right )}{8 a^2 d}+\frac {\sec \left (\frac {1}{2} (c+d x)\right ) \left (-4 a^2 \sin \left (\frac {1}{2} (c+d x)\right )+3 b^2 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{6 a^3 d}+\frac {\sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )}{24 a d} \] Input:

Integrate[Cot[c + d*x]^4/(a + b*Sin[c + d*x]),x]
 

Output:

(2*(a^2 - b^2)^(3/2)*ArcTan[(Sec[(c + d*x)/2]*(b*Cos[(c + d*x)/2] + a*Sin[ 
(c + d*x)/2]))/Sqrt[a^2 - b^2]])/(a^4*d) + ((4*a^2*Cos[(c + d*x)/2] - 3*b^ 
2*Cos[(c + d*x)/2])*Csc[(c + d*x)/2])/(6*a^3*d) + (b*Csc[(c + d*x)/2]^2)/( 
8*a^2*d) - (Cot[(c + d*x)/2]*Csc[(c + d*x)/2]^2)/(24*a*d) + ((-3*a^2*b + 2 
*b^3)*Log[Cos[(c + d*x)/2]])/(2*a^4*d) + ((3*a^2*b - 2*b^3)*Log[Sin[(c + d 
*x)/2]])/(2*a^4*d) - (b*Sec[(c + d*x)/2]^2)/(8*a^2*d) + (Sec[(c + d*x)/2]* 
(-4*a^2*Sin[(c + d*x)/2] + 3*b^2*Sin[(c + d*x)/2]))/(6*a^3*d) + (Sec[(c + 
d*x)/2]^2*Tan[(c + d*x)/2])/(24*a*d)
 

Rubi [A] (verified)

Time = 1.01 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.10, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {3042, 3204, 3042, 3534, 27, 3042, 3480, 3042, 3139, 1083, 217, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (c+d x)^4 (a+b \sin (c+d x))}dx\)

\(\Big \downarrow \) 3204

\(\displaystyle -\frac {\int \frac {\csc ^2(c+d x) \left (-3 \left (2 a^2-b^2\right ) \sin ^2(c+d x)-a b \sin (c+d x)+2 \left (4 a^2-3 b^2\right )\right )}{a+b \sin (c+d x)}dx}{6 a^2}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {-3 \left (2 a^2-b^2\right ) \sin (c+d x)^2-a b \sin (c+d x)+2 \left (4 a^2-3 b^2\right )}{\sin (c+d x)^2 (a+b \sin (c+d x))}dx}{6 a^2}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}\)

\(\Big \downarrow \) 3534

\(\displaystyle -\frac {\frac {\int -\frac {3 \csc (c+d x) \left (b \left (3 a^2-2 b^2\right )+a \left (2 a^2-b^2\right ) \sin (c+d x)\right )}{a+b \sin (c+d x)}dx}{a}-\frac {2 \left (4 a^2-3 b^2\right ) \cot (c+d x)}{a d}}{6 a^2}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {-\frac {3 \int \frac {\csc (c+d x) \left (b \left (3 a^2-2 b^2\right )+a \left (2 a^2-b^2\right ) \sin (c+d x)\right )}{a+b \sin (c+d x)}dx}{a}-\frac {2 \left (4 a^2-3 b^2\right ) \cot (c+d x)}{a d}}{6 a^2}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {3 \int \frac {b \left (3 a^2-2 b^2\right )+a \left (2 a^2-b^2\right ) \sin (c+d x)}{\sin (c+d x) (a+b \sin (c+d x))}dx}{a}-\frac {2 \left (4 a^2-3 b^2\right ) \cot (c+d x)}{a d}}{6 a^2}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}\)

\(\Big \downarrow \) 3480

\(\displaystyle -\frac {-\frac {3 \left (\frac {2 \left (a^2-b^2\right )^2 \int \frac {1}{a+b \sin (c+d x)}dx}{a}+\frac {b \left (3 a^2-2 b^2\right ) \int \csc (c+d x)dx}{a}\right )}{a}-\frac {2 \left (4 a^2-3 b^2\right ) \cot (c+d x)}{a d}}{6 a^2}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {3 \left (\frac {2 \left (a^2-b^2\right )^2 \int \frac {1}{a+b \sin (c+d x)}dx}{a}+\frac {b \left (3 a^2-2 b^2\right ) \int \csc (c+d x)dx}{a}\right )}{a}-\frac {2 \left (4 a^2-3 b^2\right ) \cot (c+d x)}{a d}}{6 a^2}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}\)

\(\Big \downarrow \) 3139

\(\displaystyle -\frac {-\frac {3 \left (\frac {4 \left (a^2-b^2\right )^2 \int \frac {1}{a \tan ^2\left (\frac {1}{2} (c+d x)\right )+2 b \tan \left (\frac {1}{2} (c+d x)\right )+a}d\tan \left (\frac {1}{2} (c+d x)\right )}{a d}+\frac {b \left (3 a^2-2 b^2\right ) \int \csc (c+d x)dx}{a}\right )}{a}-\frac {2 \left (4 a^2-3 b^2\right ) \cot (c+d x)}{a d}}{6 a^2}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}\)

\(\Big \downarrow \) 1083

\(\displaystyle -\frac {-\frac {3 \left (\frac {b \left (3 a^2-2 b^2\right ) \int \csc (c+d x)dx}{a}-\frac {8 \left (a^2-b^2\right )^2 \int \frac {1}{-\left (2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )^2-4 \left (a^2-b^2\right )}d\left (2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )}{a d}\right )}{a}-\frac {2 \left (4 a^2-3 b^2\right ) \cot (c+d x)}{a d}}{6 a^2}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {-\frac {3 \left (\frac {b \left (3 a^2-2 b^2\right ) \int \csc (c+d x)dx}{a}+\frac {4 \left (a^2-b^2\right )^{3/2} \arctan \left (\frac {2 a \tan \left (\frac {1}{2} (c+d x)\right )+2 b}{2 \sqrt {a^2-b^2}}\right )}{a d}\right )}{a}-\frac {2 \left (4 a^2-3 b^2\right ) \cot (c+d x)}{a d}}{6 a^2}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}\)

\(\Big \downarrow \) 4257

\(\displaystyle -\frac {-\frac {3 \left (\frac {4 \left (a^2-b^2\right )^{3/2} \arctan \left (\frac {2 a \tan \left (\frac {1}{2} (c+d x)\right )+2 b}{2 \sqrt {a^2-b^2}}\right )}{a d}-\frac {b \left (3 a^2-2 b^2\right ) \text {arctanh}(\cos (c+d x))}{a d}\right )}{a}-\frac {2 \left (4 a^2-3 b^2\right ) \cot (c+d x)}{a d}}{6 a^2}+\frac {b \cot (c+d x) \csc (c+d x)}{2 a^2 d}-\frac {\cot (c+d x) \csc ^2(c+d x)}{3 a d}\)

Input:

Int[Cot[c + d*x]^4/(a + b*Sin[c + d*x]),x]
 

Output:

-1/6*((-3*((4*(a^2 - b^2)^(3/2)*ArcTan[(2*b + 2*a*Tan[(c + d*x)/2])/(2*Sqr 
t[a^2 - b^2])])/(a*d) - (b*(3*a^2 - 2*b^2)*ArcTanh[Cos[c + d*x]])/(a*d)))/ 
a - (2*(4*a^2 - 3*b^2)*Cot[c + d*x])/(a*d))/a^2 + (b*Cot[c + d*x]*Csc[c + 
d*x])/(2*a^2*d) - (Cot[c + d*x]*Csc[c + d*x]^2)/(3*a*d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3139
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = Fre 
eFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + 2*b*e*x + a 
*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] && NeQ 
[a^2 - b^2, 0]
 

rule 3204
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^4, 
x_Symbol] :> Simp[(-Cos[e + f*x])*((a + b*Sin[e + f*x])^(m + 1)/(3*a*f*Sin[ 
e + f*x]^3)), x] + (-Simp[b*(m - 2)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 
 1)/(6*a^2*f*Sin[e + f*x]^2)), x] - Simp[1/(6*a^2)   Int[((a + b*Sin[e + f* 
x])^m/Sin[e + f*x]^2)*Simp[8*a^2 - b^2*(m - 1)*(m - 2) + a*b*m*Sin[e + f*x] 
 - (6*a^2 - b^2*m*(m - 2))*Sin[e + f*x]^2, x], x], x]) /; FreeQ[{a, b, e, f 
, m}, x] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1] && IntegerQ[2*m]
 

rule 3480
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A*b 
- a*B)/(b*c - a*d)   Int[1/(a + b*Sin[e + f*x]), x], x] + Simp[(B*c - A*d)/ 
(b*c - a*d)   Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 0.70 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.45

method result size
derivativedivides \(\frac {\frac {\frac {a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}-a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{2}+4 b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a^{3}}-\frac {1}{24 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-\frac {-5 a^{2}+4 b^{2}}{8 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}+\frac {b}{8 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {b \left (3 a^{2}-2 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a^{4}}+\frac {\left (16 a^{4}-32 a^{2} b^{2}+16 b^{4}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{8 a^{4} \sqrt {a^{2}-b^{2}}}}{d}\) \(223\)
default \(\frac {\frac {\frac {a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}-a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{2}+4 b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a^{3}}-\frac {1}{24 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-\frac {-5 a^{2}+4 b^{2}}{8 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}+\frac {b}{8 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {b \left (3 a^{2}-2 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a^{4}}+\frac {\left (16 a^{4}-32 a^{2} b^{2}+16 b^{4}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{8 a^{4} \sqrt {a^{2}-b^{2}}}}{d}\) \(223\)
risch \(-\frac {-12 i a^{2} {\mathrm e}^{4 i \left (d x +c \right )}+6 i b^{2} {\mathrm e}^{4 i \left (d x +c \right )}+3 a b \,{\mathrm e}^{5 i \left (d x +c \right )}+12 i a^{2} {\mathrm e}^{2 i \left (d x +c \right )}-12 i b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-8 i a^{2}+6 i b^{2}-3 a b \,{\mathrm e}^{i \left (d x +c \right )}}{3 d \,a^{3} \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{3}}-\frac {3 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{2 a^{2} d}+\frac {b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d \,a^{4}}+\frac {3 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{2 a^{2} d}-\frac {b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d \,a^{4}}+\frac {\sqrt {-a^{2}+b^{2}}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a +\sqrt {-a^{2}+b^{2}}}{b}\right )}{d \,a^{2}}-\frac {\sqrt {-a^{2}+b^{2}}\, b^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a +\sqrt {-a^{2}+b^{2}}}{b}\right )}{d \,a^{4}}-\frac {\sqrt {-a^{2}+b^{2}}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a -\sqrt {-a^{2}+b^{2}}}{b}\right )}{d \,a^{2}}+\frac {\sqrt {-a^{2}+b^{2}}\, b^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a -\sqrt {-a^{2}+b^{2}}}{b}\right )}{d \,a^{4}}\) \(417\)

Input:

int(cot(d*x+c)^4/(a+b*sin(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

1/d*(1/8/a^3*(1/3*a^2*tan(1/2*d*x+1/2*c)^3-a*b*tan(1/2*d*x+1/2*c)^2-5*tan( 
1/2*d*x+1/2*c)*a^2+4*b^2*tan(1/2*d*x+1/2*c))-1/24/a/tan(1/2*d*x+1/2*c)^3-1 
/8*(-5*a^2+4*b^2)/a^3/tan(1/2*d*x+1/2*c)+1/8/a^2*b/tan(1/2*d*x+1/2*c)^2+1/ 
2/a^4*b*(3*a^2-2*b^2)*ln(tan(1/2*d*x+1/2*c))+1/8/a^4*(16*a^4-32*a^2*b^2+16 
*b^4)/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1 
/2)))
 

Fricas [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 633, normalized size of antiderivative = 4.11 \[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx =\text {Too large to display} \] Input:

integrate(cot(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="fricas")
 

Output:

[-1/12*(6*a^2*b*cos(d*x + c)*sin(d*x + c) - 4*(4*a^3 - 3*a*b^2)*cos(d*x + 
c)^3 + 6*((a^2 - b^2)*cos(d*x + c)^2 - a^2 + b^2)*sqrt(-a^2 + b^2)*log(((2 
*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 + 2*(a*cos(d*x 
 + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 
 - 2*a*b*sin(d*x + c) - a^2 - b^2))*sin(d*x + c) - 3*(3*a^2*b - 2*b^3 - (3 
*a^2*b - 2*b^3)*cos(d*x + c)^2)*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) + 
 3*(3*a^2*b - 2*b^3 - (3*a^2*b - 2*b^3)*cos(d*x + c)^2)*log(-1/2*cos(d*x + 
 c) + 1/2)*sin(d*x + c) + 12*(a^3 - a*b^2)*cos(d*x + c))/((a^4*d*cos(d*x + 
 c)^2 - a^4*d)*sin(d*x + c)), -1/12*(6*a^2*b*cos(d*x + c)*sin(d*x + c) - 4 
*(4*a^3 - 3*a*b^2)*cos(d*x + c)^3 + 12*((a^2 - b^2)*cos(d*x + c)^2 - a^2 + 
 b^2)*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)*cos(d* 
x + c)))*sin(d*x + c) - 3*(3*a^2*b - 2*b^3 - (3*a^2*b - 2*b^3)*cos(d*x + c 
)^2)*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) + 3*(3*a^2*b - 2*b^3 - (3*a^ 
2*b - 2*b^3)*cos(d*x + c)^2)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) + 1 
2*(a^3 - a*b^2)*cos(d*x + c))/((a^4*d*cos(d*x + c)^2 - a^4*d)*sin(d*x + c) 
)]
 

Sympy [F]

\[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\int \frac {\cot ^{4}{\left (c + d x \right )}}{a + b \sin {\left (c + d x \right )}}\, dx \] Input:

integrate(cot(d*x+c)**4/(a+b*sin(d*x+c)),x)
 

Output:

Integral(cot(c + d*x)**4/(a + b*sin(c + d*x)), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(cot(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 

Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 273, normalized size of antiderivative = 1.77 \[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {\frac {a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 3 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 15 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 12 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{3}} + \frac {12 \, {\left (3 \, a^{2} b - 2 \, b^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{4}} + \frac {48 \, {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (a\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{\sqrt {a^{2} - b^{2}} a^{4}} - \frac {66 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 44 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 15 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 12 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 3 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a^{3}}{a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3}}}{24 \, d} \] Input:

integrate(cot(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="giac")
 

Output:

1/24*((a^2*tan(1/2*d*x + 1/2*c)^3 - 3*a*b*tan(1/2*d*x + 1/2*c)^2 - 15*a^2* 
tan(1/2*d*x + 1/2*c) + 12*b^2*tan(1/2*d*x + 1/2*c))/a^3 + 12*(3*a^2*b - 2* 
b^3)*log(abs(tan(1/2*d*x + 1/2*c)))/a^4 + 48*(a^4 - 2*a^2*b^2 + b^4)*(pi*f 
loor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/ 
sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*a^4) - (66*a^2*b*tan(1/2*d*x + 1/2*c)^3 
 - 44*b^3*tan(1/2*d*x + 1/2*c)^3 - 15*a^3*tan(1/2*d*x + 1/2*c)^2 + 12*a*b^ 
2*tan(1/2*d*x + 1/2*c)^2 - 3*a^2*b*tan(1/2*d*x + 1/2*c) + a^3)/(a^4*tan(1/ 
2*d*x + 1/2*c)^3))/d
 

Mupad [B] (verification not implemented)

Time = 20.00 (sec) , antiderivative size = 654, normalized size of antiderivative = 4.25 \[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx =\text {Too large to display} \] Input:

int(cot(c + d*x)^4/(a + b*sin(c + d*x)),x)
 

Output:

tan(c/2 + (d*x)/2)^3/(24*a*d) - cot(c/2 + (d*x)/2)^3/(24*a*d) + (5*cot(c/2 
 + (d*x)/2))/(8*a*d) - (5*tan(c/2 + (d*x)/2))/(8*a*d) + (3*b*log(sin(c/2 + 
 (d*x)/2)/cos(c/2 + (d*x)/2)))/(2*a^2*d) - (b^3*log(sin(c/2 + (d*x)/2)/cos 
(c/2 + (d*x)/2)))/(a^4*d) + (b*cot(c/2 + (d*x)/2)^2)/(8*a^2*d) - (b^2*cot( 
c/2 + (d*x)/2))/(2*a^3*d) - (b*tan(c/2 + (d*x)/2)^2)/(8*a^2*d) + (b^2*tan( 
c/2 + (d*x)/2))/(2*a^3*d) + (atan((2*a^5*cos(c/2 + (d*x)/2)*(b^6 - a^6 - 3 
*a^2*b^4 + 3*a^4*b^2)^(1/2) + 8*b^5*sin(c/2 + (d*x)/2)*(b^6 - a^6 - 3*a^2* 
b^4 + 3*a^4*b^2)^(1/2) - 7*a^3*b^2*cos(c/2 + (d*x)/2)*(b^6 - a^6 - 3*a^2*b 
^4 + 3*a^4*b^2)^(1/2) - 16*a^2*b^3*sin(c/2 + (d*x)/2)*(b^6 - a^6 - 3*a^2*b 
^4 + 3*a^4*b^2)^(1/2) + 4*a*b^4*cos(c/2 + (d*x)/2)*(b^6 - a^6 - 3*a^2*b^4 
+ 3*a^4*b^2)^(1/2) + 7*a^4*b*sin(c/2 + (d*x)/2)*(b^6 - a^6 - 3*a^2*b^4 + 3 
*a^4*b^2)^(1/2))/(a^8*sin(c/2 + (d*x)/2)*2i + b^8*sin(c/2 + (d*x)/2)*8i + 
a*b^7*cos(c/2 + (d*x)/2)*4i - a^7*b*cos(c/2 + (d*x)/2)*5i - a^3*b^5*cos(c/ 
2 + (d*x)/2)*13i + a^5*b^3*cos(c/2 + (d*x)/2)*14i - a^2*b^6*sin(c/2 + (d*x 
)/2)*28i + a^4*b^4*sin(c/2 + (d*x)/2)*34i - a^6*b^2*sin(c/2 + (d*x)/2)*16i 
))*(-(a + b)^3*(a - b)^3)^(1/2)*2i)/(a^4*d)
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 232, normalized size of antiderivative = 1.51 \[ \int \frac {\cot ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {12 \sqrt {a^{2}-b^{2}}\, \mathit {atan} \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a +b}{\sqrt {a^{2}-b^{2}}}\right ) \sin \left (d x +c \right )^{3} a^{2}-12 \sqrt {a^{2}-b^{2}}\, \mathit {atan} \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a +b}{\sqrt {a^{2}-b^{2}}}\right ) \sin \left (d x +c \right )^{3} b^{2}+8 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} a^{3}-6 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} a \,b^{2}+3 \cos \left (d x +c \right ) \sin \left (d x +c \right ) a^{2} b -2 \cos \left (d x +c \right ) a^{3}+9 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{3} a^{2} b -6 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{3} b^{3}}{6 \sin \left (d x +c \right )^{3} a^{4} d} \] Input:

int(cot(d*x+c)^4/(a+b*sin(d*x+c)),x)
 

Output:

(12*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a + b)/sqrt(a**2 - b**2))*sin 
(c + d*x)**3*a**2 - 12*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a + b)/sqr 
t(a**2 - b**2))*sin(c + d*x)**3*b**2 + 8*cos(c + d*x)*sin(c + d*x)**2*a**3 
 - 6*cos(c + d*x)*sin(c + d*x)**2*a*b**2 + 3*cos(c + d*x)*sin(c + d*x)*a** 
2*b - 2*cos(c + d*x)*a**3 + 9*log(tan((c + d*x)/2))*sin(c + d*x)**3*a**2*b 
 - 6*log(tan((c + d*x)/2))*sin(c + d*x)**3*b**3)/(6*sin(c + d*x)**3*a**4*d 
)